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Abstract

Publication databases rely on accurate metadata extraction from diverse web sources, yet
variations in web layouts and data formats present challenges for metadata providers. This
paper introduces CRAWLDoc, a novel system for contextual ranking of linked documents
and metadata extraction from web resources. Using a publication’s DOI, CRAWLDoc
retrieves the landing page and associated linked documents, including PDFs, ORCID pro-
files, and supplementary materials. It embeds these documents, along with anchor texts
and URLs, into a unified representation. Our layout-independent embedding and ranking
system ensures robustness across various web layouts and formats. Experimental results
show that CRAWLDoc improves bibliographic metadata extraction compared to relying
solely on landing pages. In document ranking, our fine-tuned dense retriever outperforms
sparse baselines such as BM25 and BM25+. A leave-one-out experiment across six pub-
lishers indicates robustness across publisher-specific layouts. Our source code and dataset
can be accessed at https://github.com/FKarl/crawldoc-metadata-extraction
Keywords: Large Language Models, Document Ranking, Bibliographic Metadata Ex-
traction, Scholarly Dataset

1 Introduction

Databases such as Web of Science!, Crossref?, and DBLP? are crucial academic resources of
bibliographic information. Extracting high-quality metadata about new publications, such
as authors and affiliations, is essential for these services. While there are methods and tools
for extracting bibliographic metadata (Lopez, 2009; Tkaczyk et al., 2015), these are typically
restricted to a single document like a PDF. Beyond curated bibliographies, scholarly search
engines and metadata aggregators (e. g., Google Scholar, Semantic Scholar, OpenAlex) must
integrate evidence from heterogeneous web sources and formats, making robustness to layout
and representation differences a practical requirement. Currently, many potential sources of
web content that may contain valuable metadata are underutilized. These include full texts,
publication PDF's, conference websites, publisher landing pages, ORCIDs, and other web
content. One reason is the high heterogeneity of these sources, which complicates metadata
extraction and integration.

1. https://www.webofscience.com
2. https://www.crossref.org
3. https://dblp.org
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Figure 1: Illustration of the task of bibliographic information extraction from heterogeneous
web sources. The process starts with an input DOI, which is resolved to access the associated
landing page. We then employ a document-as-query approach to rank the documents linked
from the landing page. A maximum inner product search (MIPS) ranks the top-k documents
based on embeddings from a small language model. Finally, from the selection of & relevant
documents, a generative large language model extracts the desired bibliographic metadata.

1.1 The DBLP Computer Science Bibliography Scenario

We consider the example of DBLP, the de facto main metadata provider in computer science.
The main strategy for integrating publisher-provided metadata is to implement publisher-
specific wrappers, an approach that is time-consuming and requires maintenance whenever
the publisher changes its website (Schenkel, 2018). Thus, there is a need for an automated
service to systematically search for and extract bibliographic metadata from multiple web
sources. Often, the bibliographic information cannot be found on a single website, e. g., the
publication’s landing page, necessitating to harvest linked documents and finding those rel-
evant to the publication. Identifying relevant linked documents is challenging since two web
documents with similar layouts and text can refer to different papers, with paper-specific
components like titles, authors, and affiliations. Another challenge is the heterogeneity of
web data. Important documents can be in HTML or other formats like PDF.

Among bibliographic metadata, affiliations are a key challenge. They are frequently
missing from landing pages and metadata exports, and when present they often require
correctly assigning multiple affiliation strings to individual authors. Therefore, a key chal-
lenge is to improve the extraction of affiliation information while maintaining high precision
for existing bibliographic metadata, such as titles and author names. Affiliation metadata
is particularly important for bibliometric analyses, funding attribution, and institutional
reporting, yet it is the most difficult to extract accurately. Although one might assume that
publisher-provided bibliographies, for instance through “Export BibTeX” on DBLP or via
APIs like Zotero or arXiv, would suffice, affiliation details are not consistently included.
Some sources occasionally provide affiliation data, but often not on a per-paper basis.

A method is needed to reliably extract affiliation information on a per-paper level and
for each author individually. For instance, imagine a paper with five authors, three sharing
one institution and a fourth from another, while the fifth is affiliated with both. The correct
assignment of each affiliation to the right author remains unresolved, partly due to the var-
ious layouts in PDFs and websites. Paper templates can locate affiliations in footnotes or
margins, referencing them with symbols or superscripts that complicate automated extrac-
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tion. Another reason is that using wrappers or APIs relies on crawling publisher websites,
which is expensive to maintain (Schenkel, 2018).

1.2 Proposed Solution CRAWLDoc

We propose a novel retrieval system CRAWLDoc (Contextual RAnking of Web-Linked
Documents), see Figure 1, that can automatically identify relevant data sources and extract
bibliographic metadata from diverse web sources. Input is a Digital Object Identifier (DOI)*
of a publication, which is provided by publishers (Ley, 2009). The web content linked from
this seed URI is harvested and analyzed. We employ a document-as-query approach to
identify relevant linked content that refers to the same paper as the DOI and may carry
relevant metadata. To this end, we embed the source document and linked documents
along with their associated anchor texts and URLs into a shared vector space and treat the
publication’s landing page as the query. A ranking is computed by the similarity between the
landing page embedding and the embeddings of linked documents, effectively identifying the
most relevant sources for metadata extraction. By embedding the content, we effectively
address the challenge that the web sources from which the data is extracted are highly
diverse (Schenkel, 2018) and vary in structure and format.

The key difference between CRAWLDoc and existing approaches such as Enlil (Do
et al., 2013), CERMINE (Tkaczyk et al., 2015), or GROBID (Lopez, 2009) lies in their
input scope. While these systems process a single PDF document, CRAWLDoc operates
on multiple documents of heterogeneous formats. Specifically, CRAWLDoc first collects
documents from the 1-hop neighborhood of the input DOI/URI. Subsequently, we rank
these documents using neural embeddings to identify the most relevant sources, and then
apply an off-the-shelf information extraction component on the top-ranked documents. In
our case, we use GPT-40 as the extractor.

We evaluate CRAWLDoc on a newly derived dataset from DBLP, comprising 600 pub-
lications from the six largest computer science publishers. Our dataset is unique as it
provides manually annotated relevancy labels for all outgoing links from publication land-
ing pages along with bibliographic metadata including titles, years, authors’ names, and
affiliations. Our experiments show that CRAWLDoc reliably identifies relevant web docu-
ments based on a single seed document. A zero-shot language model proficiently extracts
bibliographic metadata when given the correct context. CRAWLDoc consistently improves
the extraction performance for all publishers compared to a naive approach of solely using
the landing page. A leave-one-out experiment shows that our system is robust w.r.t. the
extraction from websites with various layouts from publishers that were not part of the
training dataset. In summary, our contributions are:

e A document-as-query approach CRAWLDoc to determine relevant documents that
encodes web content of various formats, anchor text, and URIs in a single embedding
space.

e Evaluating document ranking (MRR, MAP, nDCG) and metadata extraction (BLEU,
precision, recall) on 600 publications from the six largest computer science publishers,

4. https://www.doi.org/
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demonstrating consistent improvement of CRAWLDoc over extracting only from the
landing page.

e A robustness check to assess the generalizability of our system by training on five
publishers and testing on a held-out publisher.

e A new dataset of bibliographic metadata with author affiliations, along with relevancy
information for linked web documents. This dataset is the first of its kind to combine
both document relevancy annotations and comprehensive bibliographic metadata.

Below, we summarize related work. We introduce our CRAWLDoc metadata extraction
system in Section 3. The experimental apparatus is described in Section 4. The results are
described in Section 5 and discussed in Section 6.

2 Related Work

We discuss research in neural information retrieval, retrieval-augmented and layout-aware
language models, and scientific information extraction.

2.1 Neural Information Retrieval

Neural Information Retrieval (NIR) is a prominent research area, utilizing neural networks
to improve the retrieval process. The landscape of NIR research has been extensively sur-
veyed (Zhu et al., 2023; Zhang et al., 2016; Guo et al., 2020), highlighting the use of learned
representations of queries and documents, commonly referred to as embeddings. These em-
beddings capture semantic similarities that traditional information retrieval models might
overlook (Zhang et al., 2016; Mitra and Craswell, 2018; Abbasiantaeb and Momtazi, 2021).
A pioneering model in this domain is the Deep Structured Semantic Model (DSSM) (Huang
et al., 2013). DSSM is a latent semantic model that employs a deep neural network to project
queries and documents into a common low-dimensional space. In this space, the relevance
of a document to a query is determined by the distance between their respective projections.
The BERT model (Devlin et al., 2019), although not specifically designed for information
retrieval, has profoundly impacted NIR (Tian and Wang, 2021; Wang et al., 2024b; Li
and Gaussier, 2022). BERT-based models such as CEDR (Contextualized Embeddings for
Document Ranking) (MacAvaney et al., 2019) have achieved impressive performance on var-
ious information retrieval benchmarks. The ColBERT model (Khattab and Zaharia, 2020)
introduced a late interaction paradigm, enabling efficient and effective passage retrieval.
ColBERT’s ability to balance effectiveness and efficiency has made it a popular choice for
large-scale retrieval tasks (Santhanam et al., 2022).

Most NIR research focuses on query-to-document retrieval, where short queries are
matched to documents. Document-to-document retrieval, where a full document serves as
the query, is less common. PARM (Althammer et al., 2022) addresses this scenario for
patent argument mining: it divides the query document into paragraphs, retrieves relevant
paragraphs from a document corpus, and aggregates these paragraph-level similarities to
produce a document-level ranking. This paragraph-aggregation approach is well-suited
for long documents like patents but may be unnecessary for shorter documents such as
publication landing pages.
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2.2 Retrieval Augmentation

Pre-trained language models fine-tuned on downstream NLP tasks can store factual knowl-
edge in their parameters and produce state-of-the-art results (Lewis et al., 2020; Fan et al.,
2024). However, they perform less well on tasks requiring a high degree of knowledge.
Retrieval augmentation aims to address this by augmenting the model’s input with rel-
evant information retrieved from external sources (Ram et al., 2023; Fan et al., 2024).
REALM (Guu et al., 2020) is an early work that augments language models with a latent
knowledge retriever. Based on the pre-training text, it allows the model to retrieve and
attend over documents from a large corpus. REALM is pre-trained using masked language
modeling as the learning signal and backpropagating through a retrieval step. Atlas (Izac-
ard et al., 2023) is a model that can learn knowledge-intensive tasks with very few training
examples. It uses retrieval during both pre-training and fine-tuning. RAG (Lewis et al.,
2020) is a general-purpose fine-tuning method for retrieval-augmented generation. It com-
bines pre-trained parametric and non-parametric memory for language generation. The
parametric memory is a pre-trained Large Language Model (LLM) and the non-parametric
memory is a dense vector index of a knowledge base, accessed with a neural retriever to
find the top documents. RA-DIT (Lin et al., 2024) trains the retriever and the language
model at the same time with two distinct fine-tuning steps: one updates a pre-trained
language model to better use retrieved information, while the other updates the retriever
to return more relevant results, as preferred by the LLM. By fine-tuning over tasks that
require both knowledge utilization and contextual awareness, each stage yields substantial
task performance improvements, and using both leads to additional gains.

CRAWLDoc can be viewed as a constrained form of retrieval-augmented generation
where the retrieval corpus is limited to documents linked from a publication’s landing page
rather than a general knowledge base. This constraint is task-appropriate, as bibliographic
metadata is inherently localized to the publication’s web presence. Unlike standard RAG
systems that retrieve from large corpora using keyword or semantic queries, CRAWLDoc
uses the full landing page HTML as the query document to identify related pages that may
contain complementary metadata.

2.3 Layout-Infused Language Models

Layout-infused language models consider both textual content and spatial layout. Layout-
LMv3 (Huang et al., 2022) exemplifies this concept by pre-training multimodal transformers
with a unified text and image masking objective, enhancing performance on both text-
centric and image-centric tasks. Another approach is DocLLM (Wang et al., 2024a), which
does not rely on expensive image encoders but relies solely on bounding box information
from optical character recognition (OCR). This model is particularly useful for documents
with irregular layouts and heterogeneous content. LMDX (Perot et al., 2023) is a model-
agnostic method to adapt arbitrary LLMs for document information extraction. It extracts
text with OCR and enriches it with layout information in the form of bounding boxes. The
model proposes an XML-style prompt for information extraction and trains a text-only LLM
with text and bounding boxes. The response of the LLM is decoded as a post-processing
step based on the text and bounding boxes to discard hallucinations. Experiments show
that LMDX is effective, especially in low data regimes. Layout-infused LLMs can face
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challenges with layout distribution shifts. Chen et al. (2023) note that model performance
can degrade by up to 20 points in macro F1 score under layout distribution shifts.

2.4 Scientific Information Extraction

Several academic metadata systems exist for indexing and searching scientific literature,
including Google Scholar®, OpenAlex®, and Semantic Scholar’. Notably, affiliation extrac-
tion remains challenging, as even large-scale systems can associate many institutions with a
single author profile, illustrating the difficulty of accurate per-paper affiliation assignment.

A seminal work on metadata collection and document-level metadata extraction is the
CiteSeerX project (Li et al., 2006). Key to the system is a crawler for papers from authors’
personal websites and other web sources. It employs a rule-based approach to detect affili-
ations, complemented by an SVM-based classifier that extracts metadata from the header
of research papers (Han et al., 2003). Enlil (Do et al., 2013) addressed affiliation extraction
through a pipeline that analyzes scholarly documents to extract and match authors and
affiliations. While powerful, both CiteSeerX and Enlil focus on processing a single PDF
document per paper and tend to rely on fixed approaches tailored to PDF structures. This
single-document limitation makes them less applicable to heterogeneous multi-document
scenarios that also involve HTML. Meanwhile, tools like CERMINE (Tkaczyk et al., 2015)
and GROBID (Lopez, 2009) have also been utilized for scientific information extraction.
Although these systems remain useful for extracting basic metadata from a single PDF,
they do not address the multi-document aspect of handling heterogeneous web sources. Be-
yond these methods, commercial tools such as Elicit® offer standard solutions but similarly
do not tackle multi-document metadata consolidation.

Beyond these earlier systems, the extraction of information from scientific text has,
like many others, benefited from the advent of LLMs where they have demonstrated the
ability to produce structured information from unstructured text (Xu et al., 2023). Hy-
perPIE (Saier et al., 2023) is an approach for extracting hyperparameters from a scientific
paper. It employs zero-shot generative models to generate YAML files incorporating the
extracted hierarchical data.In the field of virology (Shamsabadi et al., 2024), LLMs have
been employed for information extraction, showcasing the potential in domain-specific ap-
plications. A zero-shot GPT-3.5 (Brown et al., 2020) is compared to an instruction-tuned
Flan-T5 (Chung et al., 2022) demonstrating the advantages of instruction-tuning the model.
The versatility of LLMs is further exemplified in the medical field, where models like GPT-
3 (Brown et al., 2020) have been applied for zero-shot and few-shot extraction of critical
variables from clinical notes (Agrawal et al., 2022).

3 CRAWLDoc Metadata Extraction

We introduce CRAWLDoc (Contextual RAnking of Web-Linked Documents), a novel sys-
tem to augment language models for entity extraction from multiple web sources. CRAWL-
Doc uses embeddings to identify relevant linked documents and then applies the results to

5. https://scholar.google.com

6. https://openalex.org

7. https://wuw.semanticscholar.org
8. https://elicit.com


https://scholar.google.com
https://openalex.org
https://www.semanticscholar.org
https://elicit.com

CrawLDoOC

Website with outgoing Website with [layout information Document Representation Embedding
in JSON Vector
[elele) Page 1 [elels) View HTML
[SEP]
hitps:farxiv.orglabshoock oo https://arxiv.org/abs/xxxx . xxxxx r a T
o) | G soun) [ doumaD [Cumisnwin s> | (b ) Brovee [SEP] 1
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Figure 2: This figure illustrates the comprehensive process of our document representation
methodology. The process begins with identifying all hyperlinks on the landing page, fol-
lowed by integrating layout information by capturing bounding boxes. The document is
then converted into a uniform textual format, which is finally encoded into a vector repre-
sentation.

the extraction task. Specifically, the task is to identify bibliographic metadata of the entity
classes: title, author names, author affiliations, and publication year.

Based on a seed URI, a DOI of a publication, CRAWLDoc scrapes linked resources,
described in Section 3.1. Subsequently, the retrieved web documents in the form of HTML
or PDF are ranked using a Small Language Model (SLM) (Lu et al., 2024). This is described
in Section 3.2. The top k documents are passed on for information extraction, i. e., detecting
and extracting relevant entities, using a LLM as described in Section 3.3. Our primary
assumption for bibliographic metadata extraction is that all necessary information can be
found within a one-hop crawl of the landing page associated with the DOI. This assumption
is based on our observation that publishers present key bibliographic information on the
landing page or pages directly linked to it e. g., the PDF of the publication.

3.1 Web Scraping from Seed URI

The initial stage of our system involves web scraping, starting with a DOI as the input and
progressing to the scraping of the corresponding web page. After this starting point, all
documents linked from the seed URI are retrieved, which may be formatted in HTML or
PDF. Both PDF and HTML files undergo a series of steps to extract the relevant text and its
associated bounding boxes to also capture layout information. For PDF documents, the text
and its corresponding bounding box coordinates are directly extracted from the file using
the PDFMiner Python library. In the case of HI'ML documents, the page is first rendered in
a Firefox web browser (Version: 129.0.2) to accurately present the content’s formatting and
layout, and then the text and bounding boxes are extracted. This ensures that the textual
content and its spatial context are preserved. This information is then converted into a
uniform textual JSON format, which includes both the extracted text and its associated
bounding box coordinates. This JSON representation serves as the input for both the
ranking step and the subsequent extraction step, where the bounding box information
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helps the LLM understand the document layout. This approach is inspired by layout-
infused language models such as DocLLM (Wang et al., 2024a) and LMDX (Perot et al.,
2023), which demonstrated that bounding box coordinates can effectively convey layout
information to text-only models without requiring expensive image encoders. Figure 2
illustrates the different steps to create our document representation.

3.2 Neural Document Ranking

In the second step, we employ a SLM for the neural document ranking task. This task
involves creating unified embeddings of the documents along with their associated anchor
texts and URLs. For each document, we construct a single input representation by con-
catenating the anchor text, URL, and document content using a special separator token
([SEP]). This representation is then embedded into a dense vector space. The connection
to Section 3.1 is illustrated in Figure 2. The document originating from the DOI (the
landing page after rendering) is embedded utilizing a query encoder, and all documents
linked from the landing page are embedded with the document encoder. A Maximum
Inner Product Search (MIPS) is performed with the embedding of the landing page and
the embeddings of all scraped documents to create a Contextual RAnking of Web-Linked
Documents (CRAWLDoc) based on the landing page.

Unlike PARM (Althammer et al., 2022), which aggregates paragraph-level similarities
for long patent documents, we embed the entire landing page as a single query vector. This
simpler approach is sufficient for our setting, as publication landing pages are relatively
short documents where paragraph-level decomposition would provide little benefit.

We use the jina-embedding-2 model (Giinther et al., 2023) as neural retriever. Following
the success of BERT-based models in neural information retrieval (Wang et al., 2024b),
Jina-v2 is based on a BERT (Devlin et al., 2019) architecture and supports the symmetric
bidirectional variant of ALiBi (Press et al., 2022), allowing for a sequence length of up to
81,921 tokens. Due to memory restrictions, we limit our experiments to the first 2,048
tokens. The neural retriever is trained using contrastive learning with the InfoNCE loss
function (van den Oord et al., 2018).

3.3 Information Extraction

Following the retrieval-augmented generation (RAG) paradigm (Lewis et al., 2020), we use
the retrieved and ranked documents as context for a language model that performs the
extraction. To facilitate the extraction of bibliographic metadata, we employ XML-style
prompts that instruct large language models to extract the required metadata from the
document and respond in a specific JSON format. Detailed information on the prompt
design can be found in Appendix C.

The process begins with the ranking scores obtained from the previous step. These
scores are used to concatenate the documents in the order of relevance, placing the most
relevant documents first. This follows common retrieval-augmented generation practice
of providing retrieved context in retriever-score order (Lewis et al., 2020) and is further
motivated by evidence that language models attend more strongly to information at the
beginning of their context window (Liu et al., 2024). To optimize the process, we limit
the number of documents to a maximum of the top five (k = 5) ranked documents. This
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decision is based on our observation that the average number of relevant documents per
publication in our dataset is 5.45 (see Section 4.1). The concatenated documents serve
as context for the LLM, which extracts key bibliographic metadata. The final output is
a JSON object containing the title, author name, author affiliation, and publication year.
This multi-document approach distinguishes CRAWLDoc from single-document extractors
like GROBID (Lopez, 2009) and CERMINE (Tkaczyk et al., 2015), enabling the system to
aggregate information scattered across multiple sources.

For information extraction, we use the GPT-40 model gpt-40-2024-08-06 via API. This
model is particularly suited due to its extensive context window, which accommodates up to
128,000 tokens, allowing us to process large volumes of text efficiently. The system outputs
the extracted information in a structured JSON format, allowing for straightforward parsing
and integration.

4 Experimental Apparatus
4.1 Dataset

We use the DBLP Computer Science Bibliography dataset.” We take a subset of bibliogra-
phies from the six largest publishers in computer science, which together represent more
than 80% of all publications listed in DBLP (see Appendix A for the full publisher distri-
bution). This ensures the dataset contains a representative set of layouts encountered for
bibliographic metadata extraction. We randomly select 100 publications for each publisher
and split them into training, validation, and test sets in an 80/10/10 ratio, ensuring each
publisher has the same number of publications per split.

Dataset Annotation We obtained the metadata for each publication by manually re-
trieving the title, publication year, and authors’ names and affiliations. We retrieved the
landing page of each publication and labeled every outgoing link on the landing page with
a binary relevancy label. A linked document is labeled as relevant if it refers to the same
publication and contains any of our target metadata fields (title, authors, affiliations, or
publication year). Otherwise, it is labeled as not relevant. Typical examples of relevant
documents include the publication PDF itself, author profile pages (e.g., ORCID), institu-
tional author pages, associated GitHub repositories, and linked BibTeX files. The annota-
tion was performed by a single expert annotator (the first author). By manually creating
this dataset, we ensure high quality of the metadata and can accurately assess the document
retrieval process in our proposed setup. The tool for conducting the labeling is documented
in Appendix D.

To prevent artificial inflation of our performance metrics, we identified and removed
any instances in our test set where the landing page contained links to itself (e. g., through
self-referential navigation elements). The trivial nature of calculating document similarity
to itself would otherwise result in an unrepresentative boost in ranking performance.

Dataset Statistics Our dataset consists of 600 publications with detailed metadata and
72,483 linked documents with binary relevancy labels. Per publication, we have on average
of 3.63 (SD: 2.10) authors, with an average of 1.14 (SD: 0.41) affiliations per author. Figure 3

9. https://dblp.org/xml/release/dblp-2024-04-01.xml.gz
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Figure 3: The figure presents several aspects of the dataset: (a) the number of affiliations
associated with each author, (b) the yearly distribution of publications, (c) the count of
linked documents per publication, and (d) the number of documents per publication that
have been assigned a positive relevancy label. Each subfigure illustrates these respective
distributions.

provides visualizations of important characteristics of our dataset. Most authors have a
single affiliation, but some have up to four affiliations. Our dataset includes publications
from a wide range of years, with a higher proportion of recent publications due to the
larger volume of newer publications listed on DBLP. On average, each publication has
120.81 (SD: 76.52) linked documents, but only 5.45 (SD: 2.99) of these documents are
relevant to the publication. The high number of linked documents is due to the inclusion of
all hyperlinks found on the landing page, including navigation menus, footer links, related
article suggestions, and publisher-wide resources, most of which are not relevant to the
specific publication.

To the best of our knowledge, we are the first to release a dataset that includes au-
thor affiliations as mentioned in the publications. Additionally, we are the first to provide

10
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relevancy labels for linked documents in the context of publication web data. For legal pur-
poses, we are only able to publish the labels and not the actual website content. However,
we publish the landing page URLs along with the relevancy labels, and provide the source
code!'® to reproduce the data collection procedure.

Dataset License The DBLP dataset is released under CCO 1.0 Public Domain Dedication
license. Our annotations have the same license.

4.2 Procedure

Our experimental procedure for document ranking involves fine-tuning a neural document
retriever using contrastive loss to improve document ranking. To ensure robust performance,
we evaluate the ranking capabilities on both in-distribution and out-of-distribution data.
For information extraction from the selected sources, we employ a zero-shot language model
(GPT-40) to extract bibliographic metadata, assessing the entire system’s effectiveness. To
demonstrate the advantages of our CRAWLDoc system, we compare it with a baseline setup
that uses only the publication’s landing page.

4.3 Hyperparameter Optimization

We optimize the hyperparameters of the neural document retriever to maximize retrieval
performance on the validation set, using nDCG as the selection criterion. Specifically, we
set the batch size to two queries and five negative examples, which is the maximum that
fits on a single H100 with 80GB of VRAM. Since contrastive learning benefits greatly from
a large batch size (Chen et al., 2022), we further optimize the number of accumulation
steps. The grid search for hyperparameters includes the following values: learning rate
(1e-05, 2e-05, 3e-05), number of accumulation steps (1, 16, 32, 64), and patience (2, 5). We
train the model for up to 25 epochs with early stopping and optimize the early stopping
patience. The optimized hyperparameters are a learning rate of 3e-05, 32 accumulation
steps, and patience of 5, resulting in 16 epochs. The hyperparameter optimization was
performed using all six publishers in the training set. For the leave-one-out experiments,
the hyperparameters were not re-tuned for the reduced training set.

For metadata extraction, we set the number of documents used as context to k = 5.
This value balances the need for comprehensive information gathering with computational
efficiency. By limiting the number of documents, we ensure a focused set of highly relevant
documents for the extraction process while maintaining a manageable computational load.
The decision to set k = 5 is based on our observation that the average number of relevant
documents per landing page is 5.45, as discussed in Section 4.1.

4.4 Metrics

To evaluate the ranking of the web documents, we employ several metrics. The Mean
Reciprocal Rank (MRR) evaluates the effectiveness of a retrieval system by considering the
rank position of the first relevant result. It is calculated as the average of the reciprocal
ranks of the first relevant result across a set of queries. Formally, MRR is defined as:

10. https://github.com/FKarl/crawldoc-metadata-extraction
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Ranking Extraction

Publisher | MRR MAP nDCG | BLEU P R

IEEE 1.000  1.000 1.000 0.901  1.000 0.937
Springer 0.800  0.998 0.800 0.913  1.000 0.944
Elsevier 1.000  0.970 0.985 0.962 0.991 0.976
ACM 1.000  0.999 1.000 0.712  0.872 0.773
arXiv 1.000  1.000 1.000 0.902  1.000 0.972
MDPI 1.000  0.954 0.982 0.954  1.000 0.979
All ‘ 0.967  0.987 0.961 ‘ 0.891  0.977 0.930

Table 1: Performance metrics for the ranking and extraction tasks across different publish-
ers. 'P’ denotes n-gram precision and 'R’ is n-gram recall. Values are provided for each
publisher, along with aggregated results for all publishers. For the extraction task, the
macro average is reported.

MRR = ﬁ Zi:l,...,|Q| %nkl The MRR focuses on the first relevant document in the
ranked list, i.e., it favors a relevant document in the highest position. In contrast, Mean
Average Precision (MAP) evaluates the precision of a retrieval system by averaging the
precision scores at all ranks where relevant documents are found and then averaging these
scores over all queries. Normalized Discounted Cumulative Gain (nDCG) (Jéarvelin and
Kekaldinen, 2002) measures the usefulness of a document based on its position in the result
list, assuming that highly relevant documents are more useful when appearing earlier. It
is computed by normalizing the Discounted Cumulative Gain (DCG) by the ideal DCG
(iDCG). Since our relevancy labels are binary (relevant/not relevant), DCG uses gains of 1
for relevant documents and 0 for non-relevant documents. We compute nDCG over the full
ranking without a cutoff. We further calculate the precision@k, recall@k, and F1@k which
measure the proportion of relevant items in the top k results.

For the extraction task, we employ the BLEU score

citepBLEU, a metric commonly used in machine translation to evaluate the similarity be-
tween the generated output and the reference. Given the nature of our generated outputs,
which tend to be concise, we focus on word-level unigram BLEU scores, as higher-order
n-grams (such as 2 to 4 grams) may not consistently occur in shorter text segments. To
provide a more granular analysis, we also calculate n-gram precision and recall at the charac-
ter level, considering 1 to 4 grams, following standard practice in text generation evaluation
citepBLEU.

5 Results

5.1 Document Ranking

The ranking results for identifying relevant linked documents are shown in Table 1. Overall,
we achieve an average ranking performance of MRR 0.967, MAP 0.987, and nDCG 0.961.
The MRR, MAP, and nDCG values exhibit a consistently high level of performance for the
six publishers, except for MRR and nDCG on the Springer dataset. The MRR for IEEE,
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Method | MRR MAP nDCG
Jina-v2 (zero-shot) 0.045  0.094 0.280
BM25 0.387  0.244 0.451
BM25+ 0.399  0.268 0.477

Jina-v2 (fine-tuned, ours) | 0.967 0.987  0.961

Table 2: Comparison of document ranking performance across different retrieval methods.
Our fine-tuned neural retriever substantially outperforms both sparse retrieval baselines
(BM25, BM25+) and the zero-shot dense retriever. Results are averaged across all six
publishers.

Elsevier, ACM, arXiv, and MDPI all achieve the maximum score of 1.000, indicating that
a relevant document is always in the top position.

Comparison with Baselines To demonstrate the effectiveness of our neural document
ranking approach, we compare it against several baselines. These include BM25 (Robertson
et al., 1994), a widely used sparse retrieval method, BM25+ (Lv and Zhai, 2011), which
addresses BM25’s over-penalization of long documents by lower-bounding each term’s con-
tribution, and Jina-v2 (zero-shot), the same embedding model we use but without any
fine-tuning on our dataset. Table 2 presents this comparison.

The fine-tuned neural retriever substantially outperforms all baselines across all metrics.
Compared to the best sparse baseline (BM25+), our approach achieves an MRR of 0.967
versus 0.399. Similarly, nDCG improves from 0.477 to 0.961 and MAP from 0.268 to
0.987. A detailed per-publisher breakdown is provided in Appendix B. The improvement is
consistent across all publishers, with particularly large gains for Springer (MRR from 0.178
to 0.800) and ACM (MRR from 0.207 to 1.000).

Notably, the zero-shot Jina-v2 embeddings perform substantially worse than even BM25
(MRR of 0.045 versus 0.387), demonstrating that fine-tuning on domain-specific data is
essential for this task. The poor zero-shot performance can be attributed to the unique
characteristics of our document-as-query setting, where the model must identify documents
about the same publication rather than semantically similar documents in general. These
results confirm that our embedding-based approach, when properly fine-tuned, effectively
handles the challenge of diverse web sources with varying structures and formats.

To understand the impact of layout information on ranking performance, we conducted
an ablation study. The results without layout information showed slightly lower performance
with an MRR of 0.950, a MAP of 0.976, and an nDCG of 0.952.

We have conducted a more detailed examination of the ranking performance with dif-
ferent cut-off values k visualized in Figure 4. The recall increases with increasing values of
k, reaching 0.97 at k = 20. Precision declines from 0.97 for k£ = 1 to 0.22 for £ = 20. The
F1@k score, which combines precision and recall, reaches its highest value of 0.77 for k =4
and k = 5.

We have evaluated robustness using a leave-one-out strategy, training on all but one
publisher and testing on the left-out publisher. The results of the robustness analysis are
shown in Table 3. We obtain a high performance across all publishers, with an average
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Figure 4: Visualization of the ranking performance evaluation of the model at different
cut-off values k.

Tested on ‘ MRR MAP nDCG

IEEE 1.000  1.000  1.000
Springer 0.757  0.835 0.772
Elsevier 1.000 0996  0.999
ACM 1.000 0999  1.000
arXiv 1.000  1.000  1.000
MDPI 1000 0979  0.992
Average | 0.959  0.968  0.961

Table 3: Performance of the ranking task across all publishers in a leave-one-out test. The
publisher the model is “tested on” is not part of the training data. The results are provided
per publisher, along with the average performance across all publishers.

MRR of 0.959, MAP of 0.968, and nDCG of 0.961. This is less than one point for MRR
and nDCG and less than two points for MAP compared to using the full training dataset
shown in Table 1. For IEEE and arXiv, the model achieves the maximum score of 1.000
for all three metrics. However, the performance was slightly lower for Springer, consistent
with the result on the full training set.

5.2 Information Extraction

The extraction performance of our system is assessed by calculating BLEU scores, n-gram
precision (P), and n-gram recall (R). The results can be found in the right column of Table 1.
CRAWLDoc achieves an overall BLEU score of 0.891, precision of 0.977, and recall of 0.930
across all publishers. IEEE, Springer, arXiv, and MDPI achieved perfect precision scores
of 1.000, with Elsevier at 0.991. Recall ranges from 0.937 to 0.979 for these publishers. In
contrast, ACM showed the lowest performance with a BLEU score of 0.712, precision of
0.872, and recall of 0.773.

Table 4 shows the extraction performance per entity type, i. e., title, author name, author
affiliations, and publication year. The extraction of titles and publication years from all
publishers achieved near-perfect accuracy, with average BLEU scores of 0.947 and 0.950, a
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Title Author Names Author Affiliations Publication Year
Publisher | BLEU P R BLEU P R BLEU P R BLEU P R
IEEE 1.000 1.000 1.000 0.784 1.000 0.884 0.821 1.000 0.863 1.000 1.000 1.000
Springer 0.925 1.000 0.946 0.875 1.000 0.899 0.955 1.000 0.971 0.900 1.000 0.960
Elsevier 0.989 1.000 0.992 0.926 1.000 0.975 0.932 0.963 0.938 1.000 1.000 1.000
ACM 0.946  1.000 1.000 0.670 0.838 0.710 0.231 0.649 0.381 1.000 1.000 1.000
arXiv 0.909 1.000 1.000 0.961 1.000 0.977 0.940 1.000 0.987 0.800 1.000 0.925
MDPI 0.914 1.000 0.936 0.972 1.000 0.994 0.932 1.000 0.987 1.000 1.000 1.000
All ‘ 0.947 1.000 0.979 ‘ 0.876 0.974 0.913 ‘ 0.810 0.939 0.865 ‘ 0.950 1.000 0.981

Table 4: Extraction performance with GPT-40 (OpenAl, 2023), given the top-5 documents
selected by CRAWLDoc, for the different entity types. P’ denotes n-gram precision and
'R’ is n-gram recall. Metrics are provided per publisher as well as aggregated over all.

Names & Affiliations
Publisher | BLEU P R
IEEE 0.613 1.000 0.941
Springer 0.654 1.000 0.984
Elsevier 0.710 1.000 0.957
ACM 0.150 1.000 0.569
arXiv 0.617 1.000 0.978
MDPI 0.494 1.000 0.981
All ‘ 0.540 1.000 0.902

Table 5: Breakdown of the extraction task performance for treating author names and
affiliation as one entity without hierarchical relation. 'P’ denotes n-gram precision and 'R’
is n-gram recall. Metrics are provided per publisher as well as aggregated over all publishers.

recall of 0.979 and 0.981, and a precision of 1.000 for both entity types, respectively. Author
names and affiliations were more difficult to extract. For affiliation extraction, a notable
decline in performance is observed for the ACM dataset with a BLEU score of 0.231 and
recall of 0.381. We observe a very low standard deviation, except for ACM (details are
provided in Appendix E).

In addition, we conducted further analysis to assess the impact of ignoring the hierarchi-
cal relationship between authors, their names, and their affiliations. Specifically, we treated
author names and affiliations as a single entity during extraction, instead of considering
their natural hierarchy. The results, shown in Table 5, indicate that CRAWLDoc achieves
a BLEU score of 0.540, precision of 1.000, and recall of 0.902 across all publishers.

In addition to the multi-document setup of CRAWLDoc, we report in Tables 6 to
8 experimental results where GROBID, CERMINE, and GPT-40 each received only the
correct single PDF for extraction. In other words, instead of considering the multi-document
case, we analyze the effectiveness of three metadata extractors here. We assume that the
ranking optimally identified the top-ranked document as the correct one and passed it on
to the extractor.

Both GROBID and CERMINE (Tables 6 and 7) achieve higher scores for extracting titles
and publication years than for affiliations, and affiliation metrics vary across publishers.
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Title Author Names Author Affiliations Publication Year
Publisher | BLEU P R BLEU P R BLEU P R BLEU P R
IEEE 0.395 0.800 0.788 0.418 0.724 0.614 0.022 0.448 0.128 0.000 0.000 0.000
Springer 0.857 0.857 0.857 0.525 1.000 0.640 0.042 0.517 0.165 0.047 0.142 0.142
Elsevier 0.807 1.000 0.983 0.820 1.000 0.891 0.117 0.769 0.295 0.111 0.555 0.461
ACM 0.649 1.000 1.000 0.797 0.941 0.855 0.180 0.705 0.357 0.000  0.000 0.000
arXiv 0.883 1.000 1.000 0.846 0.983 0.877 0.099 0.610 0.252 0.166  0.600 0.562
MDPI 0.990 1.000 0.998 0.930 1.000 0.971 0.061 1.000 0.266 0.333 1.000 1.000
All ‘ 0.760  0.945 0.940 ‘ 0.752 0.949 0.827 ‘ 0.089 0.684 0.248 ‘ 0.115 0.400 0.377

Table 6: Extraction performance with GROBID (Lopez, 2009), always provided with the
perfect PDF for extraction, for the different entity types. 'P’ denotes n-gram precision and
'R’ is n-gram recall. Metrics are provided per publisher as well as aggregated over all.

Title Author Names Author Affiliations Publication Year
Publisher | BLEU P R |BLEU P R |BLEU P R |BLEU P R
IEEE 0.612 1.000 0.928 | 0.494 0.862 0.624 | 0.247 0.482 0.334 | 0.700 0.900 0.792
Springer 0.722 1.000 0.745 | 0.534 0.793 0.616 | 0.314 0.586 0.456 | 0.714 1.000 0.817
Elsevier 0.618 1.000 0.724 | 0.800 1.000 0.871 0.570 1.000 0.751 0.666 1.000 0.856
ACM 0.575 0.888 0.792 | 0.494 0.647 0.558 | 0.242 0.617 0.356 | 0.777 0.888 0.839
arXiv 0.883 1.000 1.000 | 0.452 0.762 0.623 | 0.298 0.745 0.464 | 0.000 0.300 0.130
MDPI 1.000 1.000 1.000 | 0.916 0.976 0.959 | 0.273 0.523 0.371 1.000 1.000 1.000
All | 0741 0.981 0875 | 0.605 0.831 0.706 | 0.312 0.657 0.445 | 0.636 0.836 0.731

Table 7: Extraction performance with CERMINE (Tkaczyk et al., 2015), always provided
with the perfect PDF for extraction, for the different entity types. P’ denotes n-gram
precision and 'R’ is n-gram recall. Metrics are provided per publisher as well as aggregated
over all.

Table 8 shows that GPT-40 with only one PDF exhibits a similar pattern, with higher
scores for titles and publication years than for affiliations. Depending on the publisher,
affiliation and author-name extraction can be higher or lower compared to GROBID and
CERMINE.

A comparison of the average results for these single document extractors, along with
CRAWLDoc, can be seen in Table 9. Notably, CRAWLDoc matches or exceeds all three
single-document extractors (GPT-40, GROBID, and CERMINE) across all evaluated entity
types, despite not being provided with the perfect PDF.

We also compare CRAWLDoc, which augments the landing page with additional web
content, to a baseline using only the landing page. The results of this experiment can be
seen in Table 10.

To set these results in relation, Table 11 compares the averaged extraction performance
of the landing page only setup and CRAWLDoc. In this comparison CRAWLDoc consis-
tently outperforms the baseline for all six publishers. On average, our retrieval-augmented
CRAWLDoc achieves a BLEU score of 0.891, compared to 0.745 for the landing page ex-
traction. Precision and recall were also higher for CRAWLDoc, with improvements most
noticeable for the publishers ACM and arXiv. For example, the BLEU score for arXiv
jumped from 0.469 for landing-page-only extraction to 0.902 with CRAWLDoc, highlight-
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Title Author Names Author Affiliations Publication Year
Publisher | BLEU P R BLEU P R BLEU P R BLEU P R
IEEE 0.613 1.000 1.000 0.920 1.000 0.974 0.843 1.000 0.931 0.900 1.000 0.962
Springer 0.794 1.000 0.860 0.923 1.000 0.971 0.771 1.000 0.853 0.875 1.000 0.950
Elsevier 0.783 1.000 0.905 0.691 1.000 0.819 0.807 1.000 0.858 0.900 1.000 0.930
ACM 0.603 1.000 0.922 0.875 1.000 0.912 0.431 0.973 0.644 0.900 1.000 0.950
arXiv 0.869 1.000 0.998 0.884 1.000 0.909 0.921 1.000 0.979 0.800 1.000 0.925
MDPI 0.990 1.000 0.998 0.971 1.000 0.993 0.893 1.000 0.963 1.000 1.000 1.000
All ‘ 0.776  1.000 0.950 ‘ 0.885 1.000 0.931 ‘ 0.791 0.995 0.883 ‘ 0.896 1.000 0.953

Table 8: Extraction performance with GPT-40 (OpenAl, 2023), always provided with the
perfect PDF in the form of JSON for extraction, for the different entity types. 'P’ denotes
n-gram precision and 'R’ is n-gram recall. Metrics are provided per publisher as well as
aggregated over all.

Title Author Names Author Affiliations Publication Year
Publisher BLEU P R BLEU P R BLEU P R BLEU P R
GPT-40 0.776  1.000 0.950 0.885 1.000 0.931 0.791 0.995 0.883 0.896 1.000 0.953
GROBID 0.760 0.945 0.940 0.752  0.949 0.827 0.089 0.684 0.248 0.115 0.400 0.377
CERMINE 0.741 0.981 0.875 0.605 0.831 0.706 0.312  0.657 0.445 0.636 0.836 0.731
CRAWLDoc ‘ 0.947 1.000 0.979 ‘ 0.876 0.974 0.913 ‘ 0.810 0.939 0.865 ‘ 0.950 1.000 0.981

Table 9: Extraction performance comparison of CRAWLDoc and baseline single-document
extractors (GPT-40, GROBID, CERMINE). Each baseline extractor is always provided
with the perfect PDF, while CRAWLDoc operates in a multi-document setting without
manual intervention. P’ denotes n-gram precision and 'R’ is n-gram recall. Metrics are
provided as aggregated over all publishers.

ing the advantage of utilizing the CRAWLDoc system for more comprehensive and accurate
data extraction.

5.3 Computational Cost

We report the computational cost of GPT-40 extraction to demonstrate practicability.
Across 60 test samples (10 per publisher), the average input token count is 84,488 tokens
per publication with an average of 178 output tokens. At current API pricing ($2.50 per
million input tokens and $10.00 per million output tokens), the average cost per publication
is $0.21. The total cost for processing all 60 test samples was $12.78. Table 12 presents
a detailed breakdown per publisher. Costs vary due to differing document lengths, with
MDPI averaging the highest cost at $0.31 per publication and ACM the lowest at $0.14.

6 Discussion
6.1 Key Scientific Insights

Document Ranking The outcomes of our research illustrate the effectiveness of our
proposed document ranking and extraction system. Our system achieves high ranking
performance, with relevant documents frequently appearing at the top ranks, which estab-
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Title Author Names Affiliations Publication Year
Publisher | BLEU P R |BLEU P R |BLEU P R |BLEU P R
IEEE 1.000 1.000 1.000 | 0.784 1.000 0.884 | 0.806 0.828 0.820 | 0.900 1.000 0.956
Springer 0.925 1.000 0.946 | 0.775 0.914 0.797 | 0.843 0.914 0.864 | 0.900 1.000 0.960
Elsevier 0.711  1.000 0.749 | 0.938 1.000 0.983 | 0.813 0.889 0.856 | 0.800 1.000 0.911
ACM 1.000 1.000 1.000 | 0.000 0.649 0.054 | 0.000 0.216 0.036 | 1.000 1.000 1.000
arXiv 0.009 1.000 0.121 | 0.969 1.000 0.981 | 0.000 0.000 0.000 | 0.900 1.000 0.944
MDPI 0.900 1.000 0.921 | 0.972 1.000 0.994 | 0.932 1.000 0.987 | 1.000 1.000 1.000
All | 0.757 1.000 0.790 | 0.756 0.930 0.793 | 0.498 0.568 0.524 | 0.917 1.000 0.962

Table 10: Breakdown of the extraction task performance metrics for the different elements
that are extracted in the landing page only setup. Note that P’ denotes n-gram Precision,
and 'R’ represents n-gram Recall. Metrics are provided for each publisher individually, as
well as aggregated results over all publishers.

CRAWLDoc Only the landing page

Publisher | BLEU P R | BLEU P R

IEEE 0.901 1.000 0.937 | 0.872 0.957 0915
Springer 0.913 1.000 0.944 | 0.861 0.957 0.892
Elsevier 0.962 0991 0.976 | 0.816 0.972 0.875
ACM 0.712 0.872 0.773 | 0500 0.716  0.523
arXiv 0.902 1.000 0.972 | 0.469 0.750  0.512
MDPI 0.954 1.000 0.979 | 0951 1.000 0.976
All ‘ 0.891  0.977 0.930 ‘ 0.745 0.892  0.782

Table 11: Extraction performance of CRAWLDoc compared to using only the landing page.
P’ denotes n-gram precision and 'R’ represents n-gram recall. Values are provided for each
publisher, along with aggregated results for all publishers. The macro average is reported
to provide a comprehensive evaluation of the performance across different publishers.

lishes a strong basis for the subsequent extraction task. This trend is seen when examining
the evaluation of ranking performance at various cutoff values. We notice a sharp rise in
recall@k for the first few documents, but only minor enhancements after around five docu-
ments. The decline in precision@k as k values increase is a natural result considering that a
publication has on average 5.45 relevant documents per publication (see Section 4.1). This
is also reflected in the F1@k score, which is peaking at £ = 4 and k£ = 5. Overall, the
results show that CRAWLDoc maintains a good balance between precision and recall with
a cut-off value of k = 5.

The comparison between CRAWLDoc and extraction solely from the landing page (Ta-
ble 11) illustrates the advantages of our system. The improvement is especially noticeable
in situations such as arXiv, where the landing page lacks affiliation data. This emphasizes
the importance of utilizing information from linked documents.

Robustness of Document Ranking Our model demonstrates robust performance across
different publishers within our evaluated scope. While previous research, such as Chen et al.
(2023), has identified challenges for layout-infused LLMs when dealing with layout distribu-
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Publisher Input Output Cost

Tokens Tokens | ($/DOI)
IEEE 90,881 137 0.23
Springer 69,715 192 0.18
Elsevier 90,948 141 0.23
ACM 56,049 96 0.14
arXiv 75,794 273 0.19
MDPI 123,543 230 0.31
Average ‘ 84,488 178 ‘ 0.21

Table 12: Computational cost of GPT-40 extraction per publisher. Input and output tokens
are averaged across 10 test samples per publisher. Cost is calculated at $2.50 per million
input tokens and $10.00 per million output tokens.

tion shifts, our system shows consistent performance. This is evidenced by nearly equivalent
performance between in-distribution and out-of-distribution data, suggesting effective gen-
eralization. Academic publishers often follow similar design patterns and conventions for
their publication pages, reducing the effective layout distribution shift between sources.
This standardization is further reinforced by the widespread adoption of common publish-
ing platforms, such as Open Journal Systems'! among smaller publishers. Our robustness
evaluation considered six major publishers. The conventional nature of academic publica-
tion layouts suggests that the approach may transfer to additional publishers, but further
evaluation is required.

Information Extraction Our system achieves high extraction performance, but its re-
call could be improved. The lower recall can be attributed to a tendency for over-inclusion
rather than hallucination during error occurrences. For instance, the model may retrieve a
more detailed title including a subtitle or the conference name, rather than the more con-
cise title explicitly stated in the publication. When assessing the extraction performance of
author information at the entity level, our analysis reveals specific error patterns in entity
counting. We have observed cases of author number mismatches (1 case of over-extraction,
3 cases of under-extraction) and affiliation mismatches (4 cases of over-extraction, 14 cases
of under-extraction). These entity counting errors contribute to the decline in overall per-
formance. Moreover, affiliation extraction is more difficult due to fewer documents that
contain this information in comparison to other entities such as the title. The model also
occasionally excludes components of the affiliation strings, such as ZIP codes, or provides
abbreviated versions. The discrepancies could be caused by the differing levels of specificity
presented across different documents. For the ACM dataset, we observe that author pro-
file pages frequently appear among the top-ranked documents returned by CRAWLDoc’s
neural retriever. However, these pages often present a comprehensive history of an author’s
professional affiliations, including both past and present. A closer inspection of the ex-
tracted affiliations reveals that inaccuracies can be attributed to these profile pages where
the model retrieves outdated or newer affiliations, rather than focusing on the affiliations
relevant to the time of publication.

11. https://pkp.sfu.ca/software/ojs/
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When confined to a single PDF (Tables 6-8), GROBID, CERMINE and GPT-40 achieve
comparable results for titles and years, reflecting the relative simplicity of locating these
fields. However, the limited context of a single PDF can hinder affiliation extraction because
relevant details sometimes appear in multiple places (e.g., supplemental or author-profile
links). Consequently, GPT-40 under CRAWLDoc (Table 4) gains an advantage by inte-
grating additional, potentially clearer affiliation fields. Still, Tables 6-8 confirm that under
optimal single-document conditions, these single-PDF extractors (GROBID, CERMINE,
and GPT-4o with one PDF) can achieve comparable performance for some publishers and
evaluation metrics.

Finally, an interesting observation from our analysis concerns the role of layout informa-
tion in the extraction process. While the bounding box coordinates used in our pipeline are
beneficial to the extraction, the impact on the performance is not strong. In other words,
the LLM that operates on the JSON representation of extracted text can align the text
fields well to their respective roles (title, author, affiliation, etc.) without knowing where
the text is located in the paper.

Summary In summary, CRAWLDoc outperforms extraction from the landing page alone
across all six publishers and all evaluation metrics (Table 11). For document ranking, the
neural retriever achieves MRR, of 0.967 and nDCG of 0.961, substantially outperforming
the BM25 baseline (Table 2). For metadata extraction, CRAWLDoc achieves higher BLEU,
precision, and recall than single-document extractors (GROBID, CERMINE, GPT-40 with
one PDF) on average (Table 9), despite operating without knowledge of which document
is the publication PDF. The leave-one-out experiment (Table 3) confirms generalization to
unseen publisher layouts. However, specific publishers like Springer and ACM exhibit lower
performance, indicating room for improvement.

6.2 Generalization and Threat to Validity

The generalizability of our work refers to different publishers based on a leave-one-out test
(Table 3) in which we test the system for publishers on which it has not been trained.
Our robustness check demonstrates that a trained model can achieve comparably good re-
sults on out-of-distribution data within our tested scope. This finding suggests that our
model has learned generalizable features of document relevance and metadata extraction
that extend beyond the specific layouts and publishers in our training data. Moreover,
our approach of transforming different document formats (HTML and PDF) into a uniform
textual representation enhances its potential for generalization. This uniformity in represen-
tation suggests applicability to other web and document-related tasks beyond bibliographic
metadata extraction. The ability to handle diverse document formats while maintaining
high performance is a valuable characteristic that could facilitate the application of our
system to other data processing tasks, which are outlined below.

While our study provides robust results, it is important to reflect on potential threats
to validity.

Publisher Coverage One threat is the limited scope of our investigation, which focuses
on only six publishers, primarily from the computer science field. These publishers represent
the “fat head” of scientific publishing, together accounting for more than 80% of publications
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in computer science (see Appendix A). While this provides a representative set of layouts
for high-volume publishers, the remaining 20% of publications (the “long tail”) may exhibit
greater variability in document layouts and metadata presentation. Future work should
evaluate CRAWLDoc on smaller publishers to assess generalization to this long tail.

Component Optimization Another consideration is the extent to which system com-
ponents were optimized across all publishers. The extraction prompt (Appendix C) was
designed using publications from all six publishers, meaning the leave-one-out experiment
does not fully isolate the held-out publisher. However, the prompt contains no publisher-
specific instructions and was not refined for individual publishers. Similarly, hyperparam-
eters for the neural retriever were tuned on the full training set and not re-optimized for
the leave-one-out experiments. These design choices reflect a practical deployment scenario
where the system is configured once and applied to new publishers without re-tuning.

Recency Bias An additional possible risk is the presence of recency bias in our dataset,
given that the majority of publications in DBLP are from more recent years. Nevertheless,
we have found that older publications, including papers as far back as 1967, in our test set
achieve similar performance to more recent ones, which eases this concern. This indicates
that the performance of our model is not much influenced by the publication year.

In terms of speed, our method depends on the speed of the web crawling, the effi-
ciency of embedding the documents, and the maximum inner product search (MIPS). As
embedding model, we rely on jina-embeddings-v2, which contains only 137 million pa-
rameters (Giinther et al., 2023). A landing page has, on average, 120.81 linked documents.
Once the DOI is resolved, the crawling of those documents is efficient.

Moreover, our approach is easily parallelizable as each paper is handled independently.
While there is no particular reason why not other embedding models could be used, too,
our work does not focus on finding optimal embedding models for the retrieval tasks.

We use Jina embeddings because they are widely used and have demonstrated strong re-
sults (Glinther et al., 2023).

6.3 Future Work and Impact

Rerankers (Zhu et al., 2023) could yield additional improvements in document ranking
accuracy. Future work could also explore alternative neural retriever setups like Col-
BERTv2 (Santhanam et al., 2022) and token-level representation of documents with MaxSim
(Khattab and Zaharia, 2020) instead of cosine similarity.

Approaches like Enlil (Do et al., 2013) and others could be adapted and used in the
information extraction step of CRAWLDoc. In such a scenario, each ranked document would
be processed independently rather than concatenated. Similarly, services like CiteSeerX (Li
et al., 2006) could incorporate CRAWLDoc as a component for multi-source and multi-
format bibliographic metadata extraction.

For instance, a service like CiteSeerX could use CRAWLDoc in the future to identify
affiliation information. Since CiteSeerX has a general-purpose web crawler, it could pass
a URI to our service, and we would return affiliation information along with standard
bibliographic metadata.
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Instruction-tuning a language model to utilize layout information better, as demon-
strated by Perot et al. (2023), is another direction worth exploring for documents with
complex or varied layouts. Developing methods to identify important sections within docu-
ments could optimize context utilization, potentially improving the efficiency and accuracy
of our extraction process. This could be particularly beneficial when dealing with long doc-
uments or when processing time is a constraint. Our system can also be valuable in legal
and patent search (Nguyen et al., 2024) for retrieving and extracting precise information
from diverse documents.

7 Conclusion

Our Contextual RAnking of Web-Linked Documents (CRAWLDoc) retrieval system is effec-
tive in improving a language model’s ability to extract bibliographic metadata from various
web sources. The key scientific findings include the effective identification of relevant web
documents to improve the performance of the information extraction task and the robust-
ness of the system across different publishers and their web-layout. The retrieval-augmented
CRAWLDoc system consistently yields better extractions than relying only on the landing
page. This supports the idea that linked documents can provide useful extra context, espe-
cially when the landing page does not have enough information. The insights presented in
this study have the potential to advance the management and enrichment of comprehensive
bibliographic databases.
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Appendix A. Publisher Distribution

Table 13 shows the distribution of publications among the 25 largest publishers on DBLP.
The table includes the number of publications for each publisher, the accumulated count,
and the accumulated coverage of all publications on DBLP. For our experiments, we selected
the six largest publishers, as they collectively cover more than 80% of all publications listed
on DBLP.

Acc. Acc. DOI
Count Count Coverage Prefix Publisher

2,058,673 2,058,673 35.86% | 10.1109 Institute of Electrical and Electronics Engineers
1,103,631 3,162,304 55.08% | 10.1007 Springer-Verlag

661,729 3,824,033 66.61% | 10.1016 Elsevier

531,375 4,355,408 75.86% | 10.1145 Association for Computing Machinery

169,109 4,524,517 78.81% | 10.48550 arXiv

135,468 4,659,985 81.17% | 10.3390 MDPI AG
81,140 4,741,125 82.58% | 10.1002 Wiley Blackwell (John Wiley & Sons)
64,646 4,805,771 83.71% | 10.1080 Informa UK (Taylor & Francis)
53,450 4,859,221 84.64% | 10.1093 Oxford University Press
52,646 4,911,867 85.56% | 10.3233 I0S Press
43,017 4,954,884 86.31% | 10.1137 Society for Industrial and Applied Mathematics
42,654 4,997,538 87.05% | 10.1142 World Scientific
39,990 5,037,528 87.75% 10.1504 Inderscience Enterprises Ltd.
39,090 5,076,618 88.43% 10.1155 Hindawi Publishing Corporation
32,696 5,109,314 89.00% | 10.23919 Institute of Electrical and Electronics Engineers
31,807 5,141,121 89.55% | 10.1186 Springer (Biomed Central Ltd.)
30,875 5,171,996 90.09% | 10.4018 IGI Global
26,018 5,198,014 90.54% | 10.18653 Association for Computational Linguistics
25,522 5,223,536 90.99% | 10.1117 SPIE - International Society for Optical Engineering
24,623 5,248,159 91.41% | 10.21437 International Speech Communication Association
24,606 5,272,765 91.84% | 10.1108 Emerald (MCB UP)
23,946 5,296,711 92.26% | 10.5220 Scitepress
23,313 5,320,024 92.67% 10.1287 Institute for Operations Research and the Management Sciences
23,017 5,343,041 93.07% 10.1177 Sage Publications
22,163 5,365,204 93.45% | 10.1111 Wiley Blackwell (Blackwell Publishing)

Table 13: Publisher distribution on DBLP for the 25 biggest publisher. Showing the number
of publications listed on DBLP, the accumulated count and the accumulated coverage of all
publications on DBLP.

Appendix B. Per-Publisher Ranking Baseline Comparison

Table 14 presents a detailed breakdown of retrieval performance for each baseline method
across the six publishers. The fine-tuned Jina-v2 retriever outperforms all baselines for ev-
ery publisher. BM25 and BM25+ perform comparably on most publishers but both struggle
particularly with Springer and ACM. The zero-shot Jina-v2 embeddings show the weakest
performance across all publishers, confirming that domain-specific fine-tuning is essential
for our task.
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Jina-v2 (zero-shot) BM25 BM25+ Jina-v2 (ours)
Publisher | MRR MAP nDCG | MRR MAP nDCG | MRR MAP nDCG | MRR MAP nDCG
IEEE 0082 0085 0338 0328 0187 0507 | 0328 0197 0513 | 1.000 1.000  1.000
Springer 0024 0225 0168 | 0134 0340 0276 | 0178 0387 0335 | 0.800 0998  0.800
Elsevier 0027 0032  0234| 0465 0218 0438 | 048 0232 0460 | 1.000 0970  0.985
ACM 0055 0110 0348 | 0201 0119 0369 | 0.207 0.142 0393 | 1.000 0999  1.000
arXiv 0062 0.085 0347 | 0333 0253 0513 | 0329 0248 0508 | 1.000 1.000  1.000
MDPI 0018 0.028 0246 | 0864 0348  0.604 | 0.864 0399  0.650 | 1.000 0.954  0.982
Average | 0.045 0.094 0280 | 0387 0244 0451 | 0399 0.268 0477 | 0967 0.987  0.961

Table 14: Per-publisher comparison of document ranking performance across retrieval meth-
ods. Our fine-tuned Jina-v2 retriever outperforms all baselines for every publisher. Values
for the fine-tuned model are from Table 1.

Appendix C. Prompt Design

The design of prompts plays a crucial role in determining the performance of language
models. It is widely recognized that even minor modifications in prompt design can have
a substantial effect on the behavior of the model (Sclar et al., 2024). Prompt effectiveness
can also vary across different models. Therefore, we designed a prompt specifically tailored
to our task and model, following established best practices (Amatriain, 2024; Parmar and
Patel, 2024). Our prompt utilizes an XML-style structure as proposed by Perot et al. (2023)
to clearly define the task and desired output, providing a structured and machine-readable
format. We also included specific metadata fields as context amplification, following the
recommendations of Parmar and Patel (2024). Through iterative experiments, we fine-tuned
the prompt (presented in Listing 1) to achieve optimal performance.

Furthermore, we discovered that the order of prompt components played a crucial role in
model performance. In our experiments, we found that presenting the task description and
output format first as a system prompt, followed by the context as a user prompt yielded
the best results. This arrangement allowed the model to maintain a clear focus on the task.

Appendix D. Data Labeling Tool

The process of labeling data for this task required a substantial amount of manual labor.
To make the process more efficient, we created a specialized utility tool. Our tool employs
a two-stage approach: In the first stage, we emulate a browser landing page and prompt the
user for metadata input (as illustrated in Figure 5). The second stage involves navigating
through all linked websites within the browser emulation and asking the labeler to indicate
the relevance of each website to the publication. The labeler assigns a binary relevance
score, with ’1’ indicating relevance and ’0’ indicating irrelevance (as shown in Figure 6).
To expedite the labeling process, we utilized regular expression blacklists and whitelists to
automatically label common websites, such as cookie policy pages, as irrelevant. Figure 7
provides an overview of the entire setup of our labeling tool, showcasing its user-friendly
design and functionality.
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<PROMPT>

<TASK_INSTRUCTIONS>

<TASK_DESCRIPTION>

The task is to extract bibliographic metadata from the provided context
while utilizing the layout information. The metadata should be
structured as follows:

</TASK_DESCRIPTION>

<METADATA_FIELDS>

- title: The title of the publication

- authors: A list of authors with their according names and affiliations
- publication_year: Year of publication

</METADATA_FIELDS>

<OUTPUT_FORMAT>
Provide the extracted metadata in the following JSON format:
{
"title": "Title of the paper",
"authors": [
{
"name": "Name of the first author",
"affiliations": [
"First affiliation of author 1"
]
s
{
"name": "Name of the second author",
"affiliations": [
"First affiliation of author 2",
"Second affiliation of author 2"
]
}
1,
"publication_date": "YYYY",
}
</0UTPUT_FORMAT>
</TASK_INSTRUCTIONS>
</PROMPT>

Listing 1: The information extraction prompt we designed for our task.
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§ Label paper -

publisher_doi
10.1108
doi
10.1109/ISCAS.2006.1692698
title

Delay uncertainty due ta supply variations in static and dynamic full adders.

year

2006
publisher

IEEE

authors and affiliations

{("Massimo Alioto"™, ["Dipt. di Ingegneria dell ''Informazione, Universita di Siena|c|"])
("Gaetano Palumbo®, [""])

Figure 5: The GUI of our metadata labeling tool

¢ Label website -
https://doi.org/10.1109/GLOCOM.2006.378

publisher_doi

10,0108

doi
10.1109/GLOCOM.2006.378

title
1+N Protection in Mesh Networks Using Network Ceding over p-Cycles.

year
2006

publisher

IEEE

authors and affiliations

("Ahmed E. Kamal 0001", ["Dept. of Electr. & Comput. Eng., Iowa, State Univ., Ames, IA "])

Blacklist

Quit

Figure 6: The GUI of our relevancy labeling tool
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IEEE Xplore

Need
Il-Text

DOI: 10.1108/GLOCO]
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Power and Energy |
| has received its first

 ich re sl conured 29 i lournal I Imoact

&

Feadback.

Figure 7: An emulated Firefox browser with the labeling tool

k | Recall@k Precision@k F1@Qk
1 0.34 0.97 0.51
2 0.55 0.89 0.68
3 0.69 0.82 0.75
4 0.79 0.75 0.77
5 0.87 0.69 0.77
6 0.90 0.62 0.73
7 0.93 0.56 0.70
8 0.94 0.50 0.65
9 0.94 0.46 0.61
10 0.95 0.42 0.58
11 0.95 0.38 0.55
12 0.96 0.36 0.52
13 0.96 0.33 0.49
14 0.96 0.31 0.47
15 0.96 0.29 0.45
16 0.96 0.27 0.43
17 0.96 0.26 0.41
18 0.96 0.24 0.39
19 0.96 0.23 0.37
20 0.97 0.22 0.36

Table 15: Ranking performance evaluation of CRAWLDoc at different cut-off values (k).
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Appendix E. Additional Analysis of Ranking Performance

This appendix provides supplementary data and analysis to support the findings presented
in the main body of the paper. We offer two tables that expand on the results discussed
in the primary text. Table 15 provides a detailed evaluation of the model’s ranking per-
formance across various cut-off values (k). This Table complements the analysis presented
in Figure 4 in the main body of the paper. This table serves as an additional resource to
better understand the trends discussed in Section 5.1.

Table 16 presents a more detailed version of Table 4 from the main paper, which includes
the standard deviation.

Title Author Names Affiliations Publication Year

Publisher | BLEU P R BLEU P R BLEU P R BLEU P R
IEEE 1.000  1.000  1.000 0.784 1.000 0.884 0.821 1.000 0.863 1.000  1.000  1.000
(0.00) (0.00) (0.00) (0.29) (0.00) (0.19) (0.34) (0.00) (0.27) (0.00) (0.00) (0.00)
Springer 0.925 1.000 0.946 0.875 1.000 0.899 0.955 1.000 0.971 0.900 1.000 0.960
(0.23) (0.00) (0.16) (0.32) (0.00) (0.26) (0.10) (0.00) (0.09) (0.30) (0.00) (0.12)
Elsevier 0.989 1.000 0.992 0.926 1.000 0.975 0.932 0.963 0.938 1.000 1.000 1.000
(0.03) (0.00) (0.02) (0.22) (0.00) (0.06) (0.24) (0.19) (0.22) (0.00) (0.00) (0.00)
ACM 0.946  1.000 1.000 0.670 0.838 0.710 0.231 0.649 0.381 1.000 1.000 1.000
(0.16) (0.00) (0.00) (0.45) (0.37) (0.43) (0.32) (0.48) (0.34) (0.00) (0.00) (0.00)
arXiv 0.909 1.000 1.000 0.961 1.000 0.977 0.940 1.000 0.987 0.800 1.000 0.925
(0.17)  (0.00) (0.00) (0.14) (0.00) (0.08) (0.09) (0.00) (0.03) (0.40) (0.00) (0.15)
MDPI 0.914 1.000 0.936 0.972 1.000 0.994 0.932 1.000 0.987 1.000 1.000 1.000
(0.26) (0.00) (0.19) (0.13) (0.00) (0.04) (0.08) (0.00) (0.02) (0.00) (0.00) (0.00)
All 0.947 1.000 0.979 0.876  0.974 0.913 0.810 0.939 0.865 0.950 1.000 0.981
(0.17)  (0.00) (0.11) (0.29) (0.16) (0.24) (0.33) (0.24) (0.29) (0.22) (0.00) (0.08)

Table 16: Extraction performance for the different entity types, with standard deviation.
‘P’ denotes n-gram precision and ‘R’ is n-gram recall. Metrics are provided per publisher
as well as aggregated over all.
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