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Abstract

In this paper, we present a new approach to improving the relevance and reliability of
medical information retrieval, which builds upon the concept of Level of Evidence (LoE).
The LoE framework categorizes medical publications into seven distinct levels based on the
underlying empirical evidence. Despite LoE framework’s relevance in medical research and
evidence-based practice, only few medical publications explicitly state their LoE. Therefore,
we develop a classification model for automatically assigning LoE to medical publications,
which successfully classifies over 26 million documents in MEDLINE database into LoE
classes. The subsequent retrieval experiments on the TREC Precision Medicine datasets
show substantial improvements in retrieval relevance, when LoE is used as a search filter.

Keywords: Medical Document Facade, Level of Evidence, Evidence-Based Medicine,
Medical Search Engines

1 Introduction

In medical research and practice, where findings and decisions directly impact human
lives, successful retrieval of relevant and reliable information from scientific literature is
paramount. Relevant information includes findings that are directly applicable to a con-
dition under study, whereas reliable means that the findings are consistent under similar
conditions (Strage et al., 2023). These concepts contribute to identifying significant infor-
mation, which implies that findings have a practical and meaningful impact that is not due
to chance in terms of its effect on patient care or outcomes (Sathian et al., 2010).

Modern evidence-based medicine (EBM) relies on a systematic approach to guide med-
ical decisions using scientific evidence (Burns et al., 2011; Patrick et al., 2004). A key
component of EBM is the Level of Evidence (LoE) framework, which categorizes med-
ical research papers into 7 main distinct levels based on the strength and reliability of
evidence reported (Rosner, 2012; Desai et al., 2019; Van de Vliet et al., 2023). This
stratification, exemplified by the OCEBM (Oxford Centre for Evidence-Based Medicine
https://www.cebm.net/) framework (Howick, 2011), ranges from highly rigorous and re-
liable systematic reviews of randomized controlled trials (Level 1a) to case studies with
limited evidential value (Level 4) (Borawski et al., 2007; Group et al., 2002).
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Within this framework, each level holds unique significance, representing a specific study
design and methodology (Borawski et al., 2007). The hierarchy includes the following Levels
of Evidence (LoEs):

e Level 1la: Systematic Reviews of Randomized Controlled Trials (RCTs).
At the apex of the LoE pyramid are systematic reviews and meta-analyses of well-
conducted RCTs. Renowned for their comprehensive analysis of rigorous research,
these reviews yield the most authoritative evidence.

e Level 1b: Individual Randomized Controlled Trials (RCTs). This level fea-
tures individual RCTs that contribute crucial insights into causal relationships by
evaluating interventions in controlled settings.

e Level 2a: Systematic Reviews of Cohort Studies. Systematic reviews of cohort
studies provide valuable evidence regarding associations between interventions and
outcomes in real-world settings.

e Level 2b: Individual Cohort Studies. Individual cohort studies at this level offer
meaningful evidence about interventions’ effects within specific populations.

e Level 3a: Systematic Reviews of Case-Control Studies. Systematic reviews
of case-control studies extend insight into the associations between interventions and
outcomes, offering a broader perspective.

e Level 3b: Individual Case-Control Studies. Individual case-control studies con-
tribute evidence by exploring the relationships between interventions and outcomes
within well-defined contexts.

e Level 4: Case Series. At this level, case series provide preliminary evidence about
interventions’ effects, although they are limited by their susceptibility to biases and
confounding factors.

Although LoE is a crucial parameter for assessing a medical publication’s significance, it
is often not explicitly stated in publications, creating a problem for medical information
retrieval (IR), where the aim is to retrieve significant medical publications or their content.

Our work addresses the ‘Acquiring’ stage of the 5A’s model (Ask, Acquire, Appraise,
Apply, and Assess) in EBM (Leung, 2001), which focuses on retrieving relevant literature
to help users find the best available evidence. While LoE and the 5A’s model are dis-
tinct frameworks, enabling users to filter retrieved information based on LoE supports the
"Acquiring’ stage. Future work could explore integrating automated evidence appraisal to
complement our retrieval approach.

In this article, we propose an automatic approach to identifying and prioritizing signifi-
cant works in medical research. First, we develop a classification method for automatically
assigning LoE to medical publications, then we use the identified LoE as a search filter in
an IR setting. We demonstrate on the TREC PM (Precision Medicine) 2017-2019 collec-
tions (Roberts et al., 2017) that using LoE as a filter when retrieving medical papers leads to
improved retrieval results, and that the gain is highest for highly evidential medical papers.
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2 Related Work

Recent advancements in Evidence-Based Medicine (EBM) have emphasized the role of au-
tomation in enhancing the classification and credibility assessment of Clinical Trials and
RCTs. A key development in this area is the RobotReviewer system introduced by (Mar-
shall et al., 2014, 2016), which automates the risk of bias assessment in RCTs and provides
quality supporting text for bias assessments. This is vital for individual RCTs and also ap-
plicable to systematic reviews and meta-analyses of RCTs. The evaluation results indicate
that RobotReviewer could match the performance of human reviewers in assessing the risk
of bias (Marshall et al., 2016; Marshall and Wallace, 2019), which has been confirmed by
several subsequent studies (Soboczenski et al., 2019; Hirt et al., 2021; Arno et al., 2022).
Further, contributions from Hartling and Gates (2022) highlight the potential of such au-
tomation technologies to refine the quality and efficiency of systematic reviews, particularly
in evaluating RCTs.

These advancements mark a significant shift in EBM, offering effective solutions for
processing and categorizing extensive medical literature. However, these studies do not
cover the full range of evidence levels of medical publications. Instead, they focus only
on RCTs and their systematic reviews (Levels 1b and la in the LoE framework) and are
possibly also applicable to levels 2b and 2a (cohort studies and their systematic reviews).

While large-scale metadata sources such as PubMed’s “publication type” field offer
broader coverage (e.g., labeling studies as “Clinical Trial” or “Review”), they lack explicit
evidence-hierarchy distinctions (e.g., differentiating high-quality RCTs from lower-quality
observational studies) required for direct alignment with the LoE framework (Pasche et al.,
2020). Several machine learning-based tools are developed and used for predicting the
“publication type” field such as Anne O’Tate, RCT Tagger, Multi-Tagger, etc (Cohen et al.,
2021).

No other automation effort to date has explicitly attempted to incorporate the LoE
framework, despite its central place in EBM practice. This work’s main contribution is in
providing a fully automatic retrieval system for medical publications by automatizing the
EBM practice of assigning LoE to medical publications and then using LoE to decide on
the relevance of a publication in a given context.

3 LoE Classifier

We view the problem of assigning LoE to medical publications as a classification task and
explain in this section the training and the evaluation of the LoE classifier.

3.1 Data

We use a dataset derived from the Oncology Guidelines of the German Association of Scien-
tific Medical Societies (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachge-
sellschaften!). This dataset is unique in that it explicitly mentions the LoE of various
medical publications as per the OCEBM framework. It includes 2816 publication—LoE
pairs, extracted from unstructured PDFs?. The distribution of LoE levels in the dataset is

1. https://www.awnf.org/
2. A structured format of the dataset is available on https://github.com/samehfrihat/LevelOfEvidence
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as follows: 14% in 1a, 18% in 1b, 10% in 2a, 24% in 2b, 12% in 3a, 7% in 3b, and 15% in 4.
In Section 4.1, we compare this dataset distribution with the rest of the medical literature.

The Oncology Guidelines mention publications as citations, which include the authors
names, publication year, and publication title. This information is not sufficient for auto-
matic LoE classification, which additionally requires some of the methodology, interventions,
and clinical outcomes. This information can only be found in publication abstracts or full
texts. Therefore, we leverage the PubMed API® to enrich the initial dataset with abstracts
and PubMed IDs.

The average word count in the abstracts is 263 (SD=97), slightly above the typical range
for medical articles (Andrade, 2011). The prevalence of longer abstracts can be attributed
to the frequent use of structured abstract formats within the medical literature (Hartley,
2004). Notably, we observe a positive correlation between the abstract length and the LoE
classification: publications with higher evidence levels tend to have longer abstracts (e.g.
LoE la with a mean of 325 words (SD=163) than those with lower levels (LoE 3b and 4
with a mean of 233 words (SD=T71)).

We split this data into a training dataset containing 1690 instances (60%) and a vali-
dation and testing dataset containing 563 instances (20%) each, ensuring a stratified rep-
resentation across all classes.

3.2 Experimental Setup

For the task of LoE classification, we focus on fine-tuning PubMedBERT (Gu et al., 2021).
PubMedBERT is a natural choice for this domain-specific classification task as it is a
transformer-based model pre-trained using abstracts sourced directly from PubMed. Its
efficacy has been well-established: It currently holds the top score on the Biomedical Lan-
guage Understanding and Reasoning Benchmark (Gu et al., 2021), it excels in accurately
interpreting the unique terminologies and context of biomedical texts, and it is proficient
in handling the complexities of biomedical literature. The model is fine-tuned using the
training set and hyperparameters are optimized using the validation set. We develop the
following classifiers:

Random Forest (RF) RF serves as our baseline. It is trained on the training set for
multi-class classification. We use TF-IDF vectorization and chi-squared feature selection,
and K-Fold cross-validation using the validation dataset, evaluating its performance with
the macro-F1 score.

Multi-Class-PubMedBERT This classifier is directly fine-tuned on the training set to
classify texts into specific LoE classes, with the macro-F1 score as the evaluation matrix.

Reg-PubMedBERT This is a regression approach, which assigns numeric values to LoE
classes. PubMedBERT is fine-tuned to predict these values, by mapping different LoEs (1a,
1b, 2a, 2b, 3a, 3b, 4) to the numeric values (0, 1, 2, 3, 4, 5, 6). We used root-mean-square
error (RMSE) for evaluation. To align the model’s predictions with the original LoE classes
and to facilitate comparison with other classifiers using the F1 matrix, we mapped the
predicted value to the nearest integer value and then used the same map to get predictions
back to their corresponding LoE classes.

3. https://pubmed.ncbi.nlm.nih.gov/
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Multi-Label-PubMedBERT This classifier incorporates the multi-label classification
approach, i.e. we transform the LoE categorization into a set of binary labels. Each la-
bel corresponds to a specific Lo class, effectively converting the problem into a multi-label
classification task. This version enabled PubMedBERT to predict multiple labels simultane-
ously, accommodating the scenario where only one of the labels should be true while others
are false. By modelling the LoE classification as a multi-label task, we aim to capture po-
tential overlap between LoE classes and assess the model’s capacity to handle such nuances
by looking at the prediction list that might contain multiple levels of evidence. For proper
evaluation, we assigned the highest confidence value when multiple positive predictions.

Ensemble Majority Vote Ensemble methods are a well-established technique in classifi-
cation that capitalizes on the strengths of diverse classifiers to enhance prediction accuracy
and generalization (Polikar, 2012). We employed an Ensemble Majority Vote strategy,
combining the strengths of the three PubMedBERT models (Multi-Class, Reg, and Multi-
Label). This approach used majority voting to aggregate predictions from each model,
enhancing the overall classification accuracy and robustness (Zhou and Zhou, 2021; Dang
et al., 2020).

3.3 Classifier Evaluation

We evaluate our LoE document classifiers using Macro F1 score, RMSE, and Confusion
matrices. RMSE treats the LoE classification as a regression task by mapping each LoE
category to a corresponding integer. The RMSE score reflects the average squared difference
between the predicted and true LoE values, providing important insight into how closely the
model captures the ordinal nature of the LoE hierarchy. Lower RMSE values indicate that
the model’s predictions are closer to the true LoE, particularly emphasizing the reduced
impact of misclassifications to adjacent levels.

3.3.1 INDIVIDUAL CLASSIFIERS PERFORMANCE

Table 1 summarizes the performance of each classifier on the test dataset.

Model F1 score | RMSE
Random Forest (RF) 0.59 1.30
Multi-Class-PubMed BERT 0.78 0.90
Reg-PubMedBERT 0.74 0.69
Multi-Label-PubMedBERT |  0.79 0.90"
Majority voting 0.83 0.65

Table 1: Level of Evidence Classifiers Performance on our test set. Macro F1 Score.

* By considering the label of the highest confidence score as predicted class

RF Baseline The RF model’s performance with a macro-F1 score of 0.59 and an RMSE
of 1.30 did not surpass the deep learning models’ results. Nevertheless, the RF model shows
robustness in effectively handling the challenges of multi-class LoE classification. Analyzing
the confusion matrix in Figure la, we see that the misclassifications are rather scattered,
they are not clustered in any particular class or in neighboring classes.
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Multi-Class-PubMedBERT Multi-Class-PubMedBERT scored 0.78 in F1 (4+0.19 com-
pared with baseline) and 0.90 in RMSE, showing effectiveness in multi-class categorization.
However, after we analysed misclassification in Figure 1b, we found that the model has
some difficulties distinguishing closely related LoE classes. This suggests considering the
problem as a regression task, since misclassification with neighbor classes is not as bad as
assigning distant classes such as replacing la with 4.
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Figure 1: Confusion Matrices using the test set per model.

Reg-PubMedBERT exhibited strengths in capturing the ordered nature of LoE with an
F1 score of 0.74 and the second-best RMSE of 0.69, indicating proficiency in differentiating
between levels. This makes misclassified documents closer to the true labels, which is
reflected in the smaller RMSE and highlighted in Figure 1c. This makes misclassification
to neighboring classes less harmful than assigning far classes.
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Multi-Label-PubMedBERT The model performed best among individual classifiers
with an F1 score of 0.79, adeptly handling documents with multiple LoE categories. A
closer qualitative examination of this model’s performance revealed that some documents
were assigned into multiple LoE classes. This is a well known phenomenon, which was
explored in the work of Murad et al. (2016) bringing into question the clear demarcation
between the evidence levels of the EBM pyramid. Instead, a nuanced perspective on LoEs
has been proposed to align with the flexibility of multi-label classification as demonstrated
by Multi-Label-PubMedBERT.

3.3.2 ENSEMBLE MAJORITY VOTE PERFORMANCE

The Ensemble Majority Vote method combines the predictions of all three PubMedBERT
models and demonstrates the best performance. It scores highest in F1 (0.83) and achieves
an RMSE of 0.65, indicating its effectiveness in accurately categorizing medical literature by
LoE. This result emphasizes the significant role of collaborative intelligence in enhancing
classification outcomes. It also benefited from the power of the regression model, where

misclassification resulted in neighboring classes as shown in Figure 1d and the smallest
RMSE.

3.3.3 STATISTICAL SIGNIFICANCE ANALYSIS

We performed a statistical significance analysis on our machine learning models using a
paired t-test. After applying Bonferroni correction (v = 0.05/10), we found that all deep
learning models significantly outperformed the Random Forest baseline, indicating their
effectiveness in LoE classification. However, no significant performance differences were
observed among the deep learning models themselves, highlighting their comparable efficacy
in evidence-based classification.

3.3.4 IDENTIFYING SIGNIFICANT TERMS

We utilized the LIME (Local Interpretable Model-Agnostic Explanations) explainer (Ribeiro
et al., 2016) to identify key terms influencing our model’s predictions for different Levels
of Evidence (LoE) categories. This method provides insights by aggregating term scores,
helping us to determine significant terms for each LoE level. Such an approach enhanced
the interpretability and transparency of our model, highlighting LoE-specific terms in the
analyzed documents.

Table 2 presents the top 10 contributing terms across the LoE levels in the test set. The
results highlighted that our model was able to identify discriminating terms for each class.
Moreover, we discovered common terms shared across multiple levels, such as “systematic
review” in la (systematic reviews of RCTs), 2a (systematic reviews of cohort studies), and
3a (systematic reviews of case-control studies), and “RCT” in la and 1b (individual RCTs).
Additionally, some less expected terms, like “risk” in 2a, 2b (individual cohort studies), 3a,
and 3b (individual case-control studies), and “accuracy study” in la, 2a, and 3a (pertaining
to Diagnostic Test Accuracy studies), emerged as significant classifiers. Interestingly, a
specific therapy (“acupuncture”) only occurs among the terms of level 4, possibly indicating
the lack of stronger evidence for this method.
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la 1b 2a 2b
term score | term score | term score | term score
accur predict 2.11 | achiev complet| 1.92 | cohort studi 1.30 | cohort studi | 1.62
accur stage 1.85 | achiev patient | 1.91 | accuraci detect | 1.14 | accrual 1.42
accuraci respect | 1.72 | activ control 1.58 | systemat review| 1.09 | acquisit 1.14
rct 1.42 | activ intervent | 1.56 | meta analysi 1.02 | accept 1.11
meta analysi 1.31 | activ surveil 1.25 | exposur 0.98 | access 1.08
systemat review | 1.30 | rct 1.21 | longitudin 0.95 | accru 1.01
accuraci studi 1.17 | control set 1.12 | access 0.74 | longitudin 0.89
accuraci clinic | 1.16 | acut delay 0.98 | accur stage 0.73 | risk 0.61
achiev 1.15 | acut 0.79 | accuraci studi | 0.64 | administr 0.21
activ treatment | 1.02 | adjuv 0.71 | risk 0.59 | affect patient| 0.14
3a 3b 4

term score | term score | term score

systemat review | 1.24 | case control 1.60 | small sampl 1.69

epidemiolog 1.21 | case definit 1.41 | preliminari evid 1.32

case definit 1.17 | exposur 1.02 | exploratori research 0.99

abnorm 1.12 | risk 0.49 | uncontrol studi 0.98

exposur 1.11 | advers reaction | 0.31 | acupunctur treatment | 0.68

absent 0.98 | affect patient 0.30 | patient characterist 0.60

accuraci respect | 0.88 | age 0.29 | acupunctur effect 0.51

accuraci studi 0.71 | age diagnosi 0.23 | analysi reveal 0.22

risk 0.64 | advers effect 0.19 | analysi identifi 0.22

accur stage 0.51 | affect surviv 0.10 | affect 0.13

Table 2: Significant Terms in the Level of Evidence Classifier.

4 Levels of Evidence as a filter in medical IR

For the retrieval experiments, the 7-class LoE model was simplified into a 4-class setup by
grouping related evidence levels. This decision reflects real-world usage patterns where users
often prioritize broader evidence categories, such as high-quality studies (e.g., systematic
reviews and RCTs) or intermediate-level evidence (e.g., cohort and case-control studies).
This reduction not only simplifies classification, but also improves retrieval effectiveness
without compromising performance.

In this experiment, we investigate the benefit of Lok classification for the IR of medical
publications using TREC Precision Medicine (PM) datasets from 2017 to 2019 (Roberts
et al., 2017, 2018, 2019).

4.1 Data

The TREC PM datasets, sourced from the Medline collection*, consist of over 26 million
research article abstracts accessible via PubMed and designed to enhance biomedical IR.
Topics/queries were constructed based on disease and gene fields from the dataset, omitting
demographic data to focus specifically on abstract retrieval. Relevance judgements were

4. https://www.nlm.nih.gov/medline/medline_overview.html
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41%

I Medline
I Oncology Guidelines

Figure 2: The distribution of LoE Classes in the Medline Dataset and Oncology Guidelines
(Classifier Dataset).

performed by expert assessors on a scale of ‘not relevant (0)’, ‘partially relevant (1)’, and
‘definitely relevant (2)’, based on alignment with a given topics (Roberts et al., 2017). The
criteria for relevance did not include the LoE of the documents.

We categorize each abstract in the Medline collection into its respective LoE category
using our ensemble classifier. Figure 2 shows the distribution of LoE classes in Medline
data. Most frequent are Level 4 documents (41% of the collection), which require the
smallest empirical basis. The highest LoE la and 1b each represent only 7% of the docu-
ments. This unbalanced distribution reflects the inherent nature of the biomedical litera-
ture, where expert opinion and hypothesis-generating studies far outnumber high-evidence
clinical research, which is usually conducted after several studies have confirmed the same
observations.

In contrast, the oncology guidelines exhibit a reversed pattern, with only 15% of low
evidence documents, suggesting a higher balance ratio. This difference is due to the selection
process during the formulation of new clinical guidelines, where publications with higher
evidence are prioritized.

4.2 Experimental Setup

In this subsection, we present the IR methods used for performing this task and the evalu-
ation metric. As a core retrieval algorithm, we use BM25 (Robertson et al., 2009), which is
widely used in IR for scoring and ranking documents based on their relevance to a user query.
It is a probabilistic-based approach that builds on the classic TF-IDF (Term Frequency-
Inverse Document Frequency) model, refining it by incorporating factors like term frequency
saturation and document length normalization. The algorithm calculates a score for each
document by considering how frequently the query terms appear in the document, adjust-
ing for the overall document length and the rarity of the terms across the entire corpus.
BM25 is particularly valued for its ability to effectively balance term frequency and inverse

101



FRIHAT AND FUHR

document frequency, making it one of the most robust and popular methods for ranking
search results.

In the retrieval experiment, we first indexed the entire Medline collection (Sec. 4.1)
alongside their assigned LoE classes. The BM25 algorithm, parameterized with K; = 1.2
and b = 0.75 as recommended in (Connelly, 2019), was then applied to retrieve and rank
documents based exclusively on textual relevance (abstracts and titles) to the query, without
integrating LoE into the ranking process. This methodology ensures a fair comparison with
the baseline.

4.2.1 RETRIEVAL METHODS

Our experiment utilizes the BM25 retrieval method applied to documents of all LoE classes
(‘All’) as a baseline for our IR process. The impact of LoE classification is tested by filtering
the documents based on their LoE as follows:

o LoES3+: LoE categories 3b to la, i.e. case-control studies or higher LoE.
e LoFE2+: LoE categories 2b to la, i.e. cohort studies or higher LoE.

e LoFE1: LoE categories 1la and 1b, i.e. RCTs only.

4.2.2 EVALUATION METRIC

The performance of each model’s effectiveness was assessed using infNDCG, R-Prec, and
P@10 matrices, as these are the official matrices used to report on the datasets. Also,
we report the “Normalized discounted cumulative gain @10” (NDCG@10) metric as our
core metric (Jarvelin and Kekéldinen, 2000). This measure allows for considering relevance
grades 0...n, where, in our case, irrelevant documents receive a score of 0, while partially
relevant and definitely relevant documents receive scores of 1 and 2, respectively. For a
ranked document list, let ; denote the relevance grade of the document at rank j. Then
the (unnormalized) discounted cumulative gain for a ranked list of length & is defined as:

r
mazx(1,log, (7))

DCG(k) =)

Jj=1

With the denominator in the summation elements, DCG simulates a stochastic user stopping
behavior, where not every user checks all documents up to the final rank k, but some users
might stop at earlier ranks; the fraction of users reaching a certain rank is controlled by the
logarithm base b (usually chosen as b = 2). As the DCG values for a query depend heavily
on the number of relevant documents in the collection, they are normalized by comparing
them with the value DCG,p(k) of the optimum retrieval result (i.e. ranking documents by
decreasing relevance grades), thus arriving at the normalized discounted cumulative gain:

NDCG@k = DCG(k)/DCGop (k).

Besides incorporating a fairly realistic user stopping behavior and being one of the few
retrieval metrics considering different relevance grades, NDCG also has a nice theoretic
property: (Ferrante et al., 2021) showed that NDCG comes closest to an interval scale
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(which is a requirement for computing means and effect sizes), while other popular measures
with stochastic stopping behavior (like average precision or rank-biased precision) clearly
violate this property.

4.3 Results

As shown Table 3 using LoE to filter out document set to be searched improves the retrieval
effectiveness as measured by NDCG@10 score. The retrieval of RCT documents with highest
LoEs is the most successful. Moreover, there is a clear trend in improving NDCG when the
minimum LoE is increased. For all three collections, the strictest filter (LoE1 with only 14%
of the collection) outperformed all other methods, with substantial NDCG improvements
(0.08 ... 0.11) over the baseline. As we are re-using a test collection, performing statistical
tests here would contradict statistical testing theory (Fuhr, 2017). Instead, we give the
effect sizes, which indicate substantial improvements over the baseline.

Moreover, as shown in Table 4, our LoE1 model improved the performance of the baseline
on all matrices. It also outperformed each of the best-reported runs on infNDCG matrix and
provided comparable results on R-Prec®. In addition, the retrieval quality of our method is
accompanied with the guarantee of returning only documents of the highest evidence. On
the other hand, as the results for P@Q10 show, LoE seems to be too strict when the user is
looking at all 10 top-ranking documents.

Exp./Year | size* || 2017 2018 2019
All 100% || 0.46 0.59 0.54
LoE3+ 59% || 0.48 (0.02)** | 0.60 (0.01) | 0.57 (0.03)
LoE2+ 43% [ 0.49 (0.03) | 0.64 (0.05) | 0.58 (0.04)
LoE1 14% || 0.54 (0.08) | 0.69 (0.10) | 0.65 (0.11)

Table 3: Models’ NDCG@10 performance on TREC PM datasets

* Size denotes the percentage of the collection that was considered in retrieval.

* Numbers in parentheses show the effect size when comparing with the baseline “All”.

Exp./Year | 2017 2018 2019

All 0.43 / 0.27 / 0.52 | 0.50 / 0.32 / 0.58 | 0.47 / 0.30 / 0.57
LoE3+ 0.45 /0.28 /0.54 | 0.52 /0.34 /0.60 | 0.50 /0.31 / 0.58
LoE2+ 0.47 /0.28 / 0.54 | 0.55/0.36 /0.61 | 0.52/0.31 / 0.61
LoE1 0.52 /0.30 / 0.55 | 0.57 / 0.38 / 0.61 | 0.58 / 0.34 / 0.61
Top run | 0.46 / 0.30 / 0.64 | 0.56 / 0.37 / 0.71 | 0.58 / 0.36 / 0.65

Table 4: Models’ InfNDCG /R-Prec/P@10 performance on TREC PM datasets.*

* Best reported runs per matrix, meaning the model performing best on P@10 is not the same as the

model performing best on infNDCG.

5. Note that these are pessimistic estimates, as unjudged documents only retrieved by our method are
treated as irrelevant
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5 Discussion

In this paper, we have effectively demonstrated the automated application of the LoE frame-
work for improving the retrieval of relevant medical publications. Our approach, leverag-
ing fine-tuned PubMedBERT models, has proven adept at classifying medical publications
based on their LoE with a high degree of accuracy (macro F1 = 0.83). This advance-
ment addresses a significant gap in existing literature, where previous studies have largely
focused on specific evidence levels, particularly RCTs and their systematic reviews. The
higher transparency of our approach gives users full control over the LoE of the documents
returned. Moreover, the method investigated here could be directly integrated into the ex-
isting PubMed search engine, by simply adding estimated LoE as an additional document
attribute that can be referred to in the query.

A key finding of our work is the effect of LoE filtering in directing attention towards
the most reliable 14% of documents, while enhancing retrieval quality at the same time.
This aspect is particularly crucial in the medical domain, where accessing accurate and
high-quality information rapidly can make a pivotal difference in patient care and medical
research. On the other hand, LoE2 or LoE3 papers may also be searched for in case there
are no relevant answers in the top level, e.g. when the user is interested in more recent
methods for which higher level studies are not available yet. Therefore, we acknowledge

that clinical decision-making often requires synthesizing multiple sources across different
LoE levels.

In our study, the LoE1 model outperformed the best-reported runs on the three datasets
(Roberts et al., 2017, 2018, 2019) in terms of infNDCG and provided comparable results in
R-Prec matrix. This demonstrated the effectiveness of using LoE as a filter in medical IR,
improving the relevance and reliability of retrieved documents. These improvements over
integrating the LoE filter in the BM25 baseline suggest that these benefits could extend to
the other stronger baselines.

Although our study shows the potential of using LoE in Medline, one limitation that
needs to be considered is the potential bias from using the oncology guideline dataset for
training the classifiers. Medline collection contains publications where LoE can not be
applied, such as bioinformatics. To apply it in real-world applications, we could introduce a
new class, "others”, where the model confidence score is below the seine threshold or when
multiple positive labels are in the multi-label classifier.

Moverover, the LoE framework prioritizes study design rigor but does not assess study
quality (e.g., risk of bias). Future work should integrate tools like GRADE (Guyatt, 2009)
or Cochrane’s risk of bias assessment to enhance reliability. This requires expanding the
research article and analyzing the full text rather than the title and abstract, which are
enough for assigning LoE.

In our recently published user study (Frihat et al., 2024), we present findings from an
evaluation with medical professionals testing a clinical search engine that integrates LoE
classification with biomedical concepts as a semantic layer (Frihat and Fuhr, 2025).

The results demonstrated strong user engagement with LoE: 93% of participants re-
ported prior familiarity with LoE frameworks, and 85% actively filtered search results based
on high LoE levels, noting that this feature facilitated their ability to prioritize high-quality
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evidence. Their feedback also highlighted the added value of biomedical concept extraction
(e.g., gene-disease relationships) in contextualizing evidence.

6 Conclusion

Our research addresses the challenge faced by current search engines in identifying signifi-
cant, evidence-backed medical publications. Although relevant and widely used in evidence-
based medical practice, the LoE framework has not yet been fully automatised and tested
for medical IR. We introduce a classification model for tagging medical research abstracts
with LoE levels and demonstrate that a vast number of medical publications without LoE
tags can be successfully and fully automatically enriched with this crucial information.
Our retrieval results confirm that LoE is an effective filter that improves results in a fully
automatic retrieval scenario. These results suggest that our LoE based approach to medi-
cal IR is a viable and robust tool to evidence-based medical practice, which can facilitate
and improve medical decision-making, leading to better patient care. However, effective
decision-making often requires synthesizing multiple studies and integrating clinical prac-
tice guidelines, which remains an important area for future work.
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