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Abstract

Medical case retrieval plays a crucial role in clinical decision-making by enabling healthcare
professionals to find relevant cases based on patient records, diagnostic images, and textual
descriptions. Given the inherently multimodal nature of medical data, effective retrieval
requires models that can bridge the gap between different modalities. Traditional retrieval
approaches often rely on unimodal representations, limiting their ability to capture cross-
modal relationships. Recent advances in dense model-based techniques have shown promise
in overcoming these limitations by encoding multimodal information into a shared latent
space, facilitating retrieval based on semantic similarity. This paper investigates the po-
tential of dense models to enhance multimodal search systems. We evaluate various dense
model-based approaches to assess which model characteristics have the greatest impact on
retrieval effectiveness, using the medical case-based retrieval task from ImageCLEFmed
2013 as a benchmark. Our findings indicate that different dense model approaches sub-
stantially impact retrieval effectiveness, and that applying the CombMAX fusion method
to combine their output results further improves effectiveness. Extending context length,
however, yielded mixed results depending on the input data. Additionally, domain-specific
models—those trained on medical data—outperformed general models trained on broad,
non-specialized datasets within their respective fields. Furthermore, when text is the dom-
inant information source, text-only models surpassed multimodal models.

Keywords: Medical Search, Multimodal Retrieval, Dense Retrieval

1 Introduction

The increasing volume of digital medical records and imaging data has made medical case
retrieval an important tool for clinical decision-making (Sivarajkumar et al., 2024). Physi-
cians and researchers often need to retrieve relevant cases that share similar characteristics
with a given medical query, which may include text and images. This retrieval supports
comparing diagnostic outcomes, exploring treatment options, or gaining insights from his-
torical cases. However, the multimodal nature of medical case data—often consisting of
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both textual descriptions (e.g., reports, diagnoses) and visual content (e.g., radiographs,
MRIs)—poses significant challenges for retrieval systems. Traditional information retrieval
methods frequently rely on text-based searches, which may fail to capture the intricate rela-
tionships between textual and visual data fully. The challenge lies in effectively integrating
these modalities to improve retrieval accuracy and relevance, i.e., to retrieve results that
are not only topically relevant but also visually and semantically aligned with the query.
Recent advances in deep learning, particularly in dense model-based approaches, offer
new opportunities for multimodal retrieval. Multimodal models encode multiple modalities
into a shared latent space, allowing for retrieval based on cross-modal semantic similarity.
In this paper, we explore whether dense multimodal models can outperform traditional
retrieval methods by addressing the challenge of integrating text and images through dense
representations within a multimodal framework. To evaluate the effectiveness of various
dense model-based approaches, we focus on the case-based retrieval task from Image-
CLEFmed 2013. The ImageCLEFmed 2013 dataset is distinguished by its multimodal
collection of text and images, along with relevance judgments that are key for effectiveness
evaluation. To guide our investigation, we pose the following research questions:

RQ1 Which characteristics of dense models have the greatest impact on retrieval effective-
ness in multimodal search systems?

RQ2 How does the effectiveness of dense multimodal models compare to traditional search
systems in medical case retrieval, and what factors influence their relative effective-
ness?

To answer RQ1, we conduct a series of experiments, exploring different result fusion
methods and dense models. These experiments analyze how factors like context length
and domain specificity, particularly within the medical domain, influence retrieval effective-
ness. Our findings show that dense model approaches significantly influence results, with the
CombMAX fusion method yielding the best effectiveness, specialized domain-specific models
surpassing general ones, context length extensions producing mixed effects, and text-based
models outperforming multimodal models when text is the primary information source.
To answer RQ2, we perform a comparative analysis against the leading submissions from
the ImageCLEFmed 2013 case-based retrieval task, which predominantly employed tradi-
tional sparse approaches. The results suggest that dense retrieval holds great potential,
particularly for improving semantic similarity searches across different modalities.

2 Related work

Our work explores dense retrieval models for multimodal medical ad hoc search, a field
that builds upon two key areas: medical case retrieval and multimodal fusion. Medical case
retrieval has evolved from traditional text-based methods, such as keyword search, query
expansion, and relevance feedback, to multimodal systems that integrate various types
of medical data. While systems like PubMed,! which use keywords, Boolean operators,
and MeSH terms to refine search results, remain foundational in biomedical information

1. https://pubmed.ncbi.nlm.nih.gov/
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retrieval (Jin et al., 2024; Lu et al., 2009), they are primarily text-centric. In contrast, real-
world clinical scenarios often demand the integration of heterogeneous evidence, including
both textual and visual data, to support accurate diagnosis and treatment.

Multimodal retrieval systems integrate multiple evidence types by combining informa-
tion from different modalities. Early examples include MedGIFT (Group, 2009), which
allows independent text or image-based searches, and img(Anaktisi) (Zagoris et al., 2009),
focused on image-based retrieval across medical datasets. Later approaches, like NovaMed-
Search (Mourao and Martins, 2013), fuse textual and visual data to improve case retrieval
performance. The ImageCLEF medical retrieval task (Miiller and Kalpathy-Cramer, 2010)
introduced fusion techniques specifically for case retrieval, emphasizing the integration of
textual and visual information. Comparisons of different fusion methods in medical case
retrieval tasks were further explored by Garcia Seco de Herrera et al. (2015).

Multimodal fusion systems combine information from diverse sources to support decision-
making by creating a context-aware representation. Fusion techniques include early fusion,
late fusion, and hybrid fusion, which blend aspects of both approaches (Bayoudh et al.,
2022; Zhang et al., 2021; Bruni et al., 2014).

Early fusion combines raw data or features from multiple modalities at the beginning
of the data processing pipeline, allowing a more thorough cross-modal correlation analysis.
However, it often requires data standardization, such as dimensionality reduction, to ensure
compatibility across modalities. In contrast, late fusion integrates information from different
modalities at the decision stage, where each modality is processed independently before
merging results through operations like concatenation or averaging (Feng et al., 2021). This
approach offers more flexibility and can better handle individual modality errors but often
fails to capture complex cross-modal dependencies and interactions (Zhang et al., 2021).

Recent studies have explored deep learning-based multimodal fusion for medical tasks.
Li et al. (2024) reviewed deep learning-based information fusion techniques for medical
image classification, highlighting their role in enhancing medical decision-making. Similarly,
Cui et al. (2023) provided a comprehensive review of deep multimodal fusion of image and
non-image data for disease diagnosis and prognosis, demonstrating the growing importance
of multimodal techniques in biomedical applications. These works underscore the need for
optimized fusion techniques tailored to medical retrieval tasks.

In this work, we focus on late fusion strategies to aggregate individual results (e.g.,
derived from different modalities) into a final score. This choice is motivated by the desire to
leverage the strengths of individual modality-specific models while maintaining flexibility in
handling different data types and potential errors within each modality. Within late fusion,
there are score-based methods (e.g., CombSUM, CombMNZ) that merge normalized scores
and rank-based methods (e.g., CombMAX) that prioritize document order (Hsu and Taksa,
2005). Rank-based methods are further categorized into positional (e.g., Borda Fuse (Aslam
and Montague, 2001), and Reciprocal Rank Fusion (Cormack et al., 2009)) and majoritarian
(e.g., Condorcet (Montague and Aslam, 2002)), with positional approaches assigning votes
by rank and majoritarian methods using pairwise comparisons between documents.

Despite extensive exploration of image-text multimodal models, their applications in
the biomedical field remain under-researched, particularly in areas such as clinical case
retrieval. Guo et al. (2024) provided a detailed survey on advancements in these models,
emphasizing their impact on biomedical multimodal technologies. A major breakthrough
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in multimodal retrieval was the introduction of CLIP (Radford et al., 2021), which learns
joint representations of images and text through contrastive learning. CLIP has shown
strong zero-shot and few-shot learning capabilities across diverse image-text tasks, making
it a central component in many recent multimodal retrieval systems, including our work.
Although more recent approaches such as ColPali (Faysse et al., 2025) have emerged, CLIP
remains a foundational model that influenced the development of our system, particularly
given its relevance at the time of our experiments.

Building on these insights, our study addresses the specific challenges in medical case-
based retrieval tasks by evaluating various dense model-based approaches. The findings
contribute to a deeper understanding of which dense multimodal approaches are most ef-
fective for biomedical applications, contributing to the broader development of image-text
retrieval technologies in this domain.

3 Methodology

This section presents the methodology for achieving the research goals, including defining
the retrieval task, presenting the experimental pipeline, and detailing the experimental
variables considered and how they will be varied to assess their impact on the final results.

3.1 ImageCLEFmed 2013 case-based retrieval task

We selected the case-based medical retrieval task from ImageCLEFmed 2013 (Garcia Seco de
Herrera et al., 2013) due to its multimodal collection of text and images and the availability
of relevance judgments, which are crucial for evaluating a search system. To our knowledge,
this was the only available dataset with these characteristics, making it our best choice. The
task simulates a clinician’s diagnostic workflow by finding articles from a vast collection of
biomedical literature (PubMed Central?) that could aid in differential diagnosis, based on
a given case description and images of a patient’s case. The dataset includes 75,000 articles
and 35 query topics (i.e., cases), all following a well-defined structure, and a total of 300,000
images. Each article is structured into sections such as the title, author names, abstract,
full text, figures, and captions, while the query topics, also divided into sections, contain a
detailed case description and several relevant images.

Our analysis of the dataset revealed significant heterogeneity in the textual component,
with text sections ranging from concise titles (average of 21 tokens) to fulltexts (up to
90,605 tokens). For the visual component, it was found that images in relevant articles
differ notably from query images. Article images are mostly graphs and charts, while query
images are medical exam images, creating a disadvantage for visual retrieval. Compound
images, which contain multiple sub-images within a single frame, also add complexity.

In ImageCLEF, the articles were evaluated for relevance based on their contribution to
differential diagnosis, using a three-point scale: relevant, partly relevant, or non-relevant
(Kalpathy-Cramer et al., 2015). Analysis showed that physicians prioritized textual infor-
mation over visual content in their decision-making. The images in relevant articles differed
significantly from the query images, suggesting that visual content played a secondary role
in their relevance assessments. Consequently, it is unlikely that a system relying solely on

2. https://www.ncbi.nlm.nih.gov/pmc/
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visual information could effectively retrieve relevant articles. Furthermore, Garcia Seco de
Herrera et al. (2017) observed that incorporating visual data into a multimodal approach
did not enhance retrieval effectiveness for the specific topics of the ImageCLEF task.

A total of 15,028 relevance judgments were made across all query topics, with only
0.57% of the collection judged per topic, as detailed in Section 5.7. The limited judgments,
especially the lack of relevant documents, posed challenges, as also noted by Garcia Seco
de Herrera et al. (2015). This impacted top results in the case-based task with relatively
low scores, where MAP scores ranged from 0.0281 to 0.2429, depending on retrieval type
(visual, mixed, or textual), as discussed in Section 5.6. Mitigation efforts are explored in
Section 6.

3.2 Experimental multimodal retrieval pipeline

To systematically experiment with and evaluate dense model-based approaches, we built
a functional prototype of the retrieval system. The source code is openly available on
GitHub.? The workflow is organized into five key steps:

1. Dataset collection and article encoding: In this step, raw data is processed and
encoded into dense embeddings.

2. Storage and indexing of embeddings: The encoded articles are represented in an
embedding space and indexed for efficient retrieval. We used Faiss* (Johnson et al.,
2021) version 1.8.0 with the GPU implementation, employing its HNSW index with
squared Euclidean (L2) distance, which preserves ranking while improving efficiency
by avoiding square root calculations.

3. Query encoding: Query documents are transformed into embeddings followed by
a similarity search, using Faiss, against the pre-computed indexed embeddings of the
articles for retrieval.

4. Results fusion: Results from multiple retrieval approaches are combined, matching
each section of the query with corresponding sections in the article, which may contain
textual or visual information.

5. Retrieval: A ranked list of documents based on the fused results is produced.

3.3 Experimental variables

With the functional pipeline established as the foundation for experimentation, we have the
flexibility to adjust and refine various elements of the system. Through this process, we
systematically assess how different changes impact the effectiveness of the retrieval task.

3.3.1 RESULTS FUSION

Since the documents consist of multiple distinct sections, each section of the article doc-
ument must be compared with each section of the topic document, resulting in multiple

3. https://github.com/catarinaopires/eval-multimodal-medical-case-retrieval
4. https://faiss.ai
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ranked lists that require results fusion. For instance, when comparing a topic description
with article images, we need to compute the similarity between the textual description and
each article image, generating multiple ranked lists. To obtain a single final ranking, we
then apply one of the result fusion methods.

We experiment with CombSUM, CombMAX, and CombMNZ, given their demonstrated
effectiveness within the Comb family, introduced by Shaw and Fox (1994). For each docu-
ment 4, the score after fusion can be computed as:

N()
CombSUM (i) = > Si(i), (1)

k=1
CombM AX (i) = maxz(S),VS C D;, (2)
CombMNZ(i) = N(i) *x CombSU M (i), (3)

where Sj(7) is the score of the i-th document in the k-th result list, N (i) refers to the
number of times a document appears in the result lists, and D; denotes the set of scores
(S) assigned to document ¢ across all result lists in which it appears.

3.3.2 MODELS

Our study explores the use of dense models in multimodal search, focusing on how var-
ious model architectures and capabilities impact retrieval effectiveness, particularly when
handling both text and image data. The models employed, primarily using HuggingFace®
implementations in Python, include CLIP’s ViT-B/16 variant (Radford et al., 2021), Long-
Clip B/16 (Zhang et al., 2024), a fine-tuned version of CLIP that extends the token capacity
from 77 to 248 for longer text—image pairs, PubMedCLIP (Eslami et al., 2021), a fine-tuned
CLIP model for medical image-caption tasks, as well as Llama 3 (Grattafiori et al., 2024)
with 8 billion parameters and LLaVA-1.5 (Liu et al., 2023) with 7 billion parameters.

One of the challenges in multimodal retrieval is managing different modalities. A key
decision is whether to use a multimodal model that processes both text and images together
or to handle each modality separately using unimodal models. While CLIP effectively man-
ages visual data, it struggles with long texts due to its limited token capacity. Aggravating
this problem, Zhang et al.’s experimental findings suggest that the effective length of text
that CLIP can handle optimally is no more than 20 tokens, beyond which it struggles to
utilize the additional information effectively. This limitation can result in the loss of crucial
information necessary for accurate retrieval. Although models like LongCLIP attempt to
address CLIP’s token limit by increasing token capacity, alternatives like large language
models (e.g., Llama 3) may be better suited for handling lengthy text inputs.

The main strength of multimodal models lies in their capacity to encapsulate data across
various modalities within a shared latent space, facilitating comparison and relationship es-
tablishment. In contrast, employing unimodal models would compromise this key capability,
impeding cross-modality comparisons. Nevertheless, it is feasible to mitigate the limitation
of unimodal models in cross-modality comparisons by homogenizing data modalities into a

5. https://huggingface.co/
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singular format, like text. A potential solution is to convert visual data into text through
image descriptions, allowing unimodal models to handle the transformed data exclusively
in text format. Using a multimodal generative model such as LLaVA, images are translated
into textual descriptions, which can then be compared with existing text-based content.
Transforming visual data into text-based representations facilitates the comparison of im-
ages and text within a unified latent space, even when using text-only models.

Finally, our study evaluates the potential benefits of domain-specific models, such as
PubMedCLIP, over general-purpose models like CLIP for improving multimodal search
systems in medical information retrieval.

4 Experimental setup

This section presents the experimental setup, outlining the planned experiments along with
their objectives and focus. It also presents the evaluation metrics used to assess the impact
of each approach and details the computational resources employed for execution.

4.1 Experiments

To address the outlined research questions, we conducted five experiments, focusing on
model variations to investigate how different factors influence retrieval effectiveness.

Exp. 1 Results fusion effectiveness: Firstly, we will evaluate the impact of using differ-
ent results fusion approaches, such as CombSUM, CombMAX, and CombMNZ, by
applying them to retrieval outputs from CLIP and comparing their effectiveness.

Exp. 2 Effect of context length: Our second experiment will examine whether the con-
text length of a model influences the obtained results. To explore this, we will
compare the effectiveness of the CLIP model with the LongCLIP model.

Exp. 3 Domain-specific model effectiveness: Our third experiment will investigate
whether a domain-specific model can outperform a general-purpose model. This
experiment will involve comparing the effectiveness of PubMedCLIP against CLIP.

Exp. 4 Unimodal vs. Multimodal effectiveness: Our fourth experiment examines
whether a unimodal approach can outperform a multimodal baseline with the dataset
at hand. This will involve comparing the outcomes of Llama against CLIP.

Exp. 5 Dominant data type approach: The fifth experiment assesses whether selecting
a dominant data type (text) and converting visual content to a textual represen-
tation can outperform the baseline, which uses the original multimodal data. To
investigate this, we will compare the effectiveness of searches using the existing
topic sections with those using LLaVa’s generated topic image descriptions. This
comparison will involve all utilized models, not just the text model Llama.

4.2 Measure

Following established methodologies and metrics from ImageCLEFmed 2013, we report
MAP as the primary metric, along with GM-MAP (Geometric Mean, or GMAP), bpref,
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and P@10/@30 as complementary metrics. The highest scores in each column are bolded,
and statistically significant results are marked in the tables, based on a two-tailed paired
permutation test with 100,000 permutations. A Holm-Bonferroni correction was applied
at the 0.05 significance level (95% confidence interval) to account for multiple comparisons
when evaluating the effectiveness of different dense model-based approaches on the selected
dataset. In addition, we report effect sizes (Cohen’s d,), standard errors (SE), and 95%
confidence intervals (CI), computed for each comparison relative to its respective baseline.

4.3 Computational resources

Initial experiments were conducted on a server equipped with two NVIDIA GeForce RTX
2080 Ti GPUs, each with 11GB of VRAM, which provided sufficient resources for run-
ning smaller models like CLIP. As the complexity of the experiments increased, the com-
putational tasks were migrated to a more advanced computing environment managed by
SLURM (Jette and Wickberg, 2023). This setup featured multiple GPUs, including NVIDIA
Tesla V100 and NVIDIA A100 models, with 32GB and 80GB of VRAM, respectively. Some
steps were run without GPUs and on the less advanced setup to minimize resource usage
when possible.

5 Results

The overall results for all experiments are summarized in Table 1, with the scores presented
as averages to provide an overview of effectiveness across all topics. Additionally, effect sizes,
standard errors, and 95% confidence intervals are reported for all statistically significant
comparisons (p < 0.05, Holm-Bonferroni corrected) in Table 2. To evaluate each proposed
approach, we conducted individual searches for each section of the topic documents against
each section of the article documents, testing all possible combinations. Thus, the results
tables are organized by topic section (Description, Images) and article section (Title, Ab-
stract, Fulltext, Images, Captions). The scores represent the outcomes of comparing each
section from the topic (left-most label) to each section from the article (row-label).

5.1 Results fusion effectiveness

The first experiment examines the impact of different result fusion methods—CombSUM,
CombMAX, and CombMNZ—without altering the underlying CLIP model. CombSUM
serves as the baseline for comparison, and the effectiveness results for each method are
presented in the top section of Table 1. Since topic descriptions and article titles, abstracts,
and fulltexts are directly compared, results fusion is unnecessary. Therefore, CombMAX
and CombMNZ scores remain unchanged from the baseline and are omitted from the table.

CombMAX consistently outperforms the baseline, particularly when comparing topic
images to article images and captions. The medium effect size indicates that the observed
improvement is likely to be meaningful in practice, even if not large, indicating better
prioritization of relevant documents at the top results. In contrast, CombMNZ produces
results nearly identical to CombSUM, with no meaningful improvements observed.
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An example of CombMAX’s advantage is seen in topic 29, where the query includes
two head CT scans, and a relevant article (per qrels) contains one matching CT and one
unrelated MRI. CombMAX ranked the article 16th by emphasizing the strongest match,
while CombSUM ranked it 124th due to the MRI diluting the overall score. This highlights
CombMAX’s strength when a single strong match determines relevance.

Overall, CombMAX emerges as the most effective result fusion method in
this context, consistently outperforming CombSUM and CombMNZ across most metrics.

5.2 Effect of context length

The second experiment investigates the impact of context length by comparing CLIP (77
tokens) with LongCLIP (248 tokens), using CombMAX across all runs. The baseline in-
volves CLIP, and the experiment assesses whether longer context lengths improve results by
maintaining the same fusion method for comparison. Results are at the bottom of Table 1.

Results indicate that CLIP generally performs better with short texts like titles and
captions, aligning with its original training setup. LongCLIP shows mixed results: it slightly
improves effectiveness on longer inputs such as abstracts, but often underperforms on shorter
texts, with some statistically significant drops. Visual comparisons show varied results
across models, likely due to differences in the text—image alignment learned during training.

In summary, while context length influences retrieval effectiveness, a longer
context does not consistently yield better results. The benefits of longer context
length depend on the type and structure of the input data.

5.3 Domain-specific model effectiveness

The third experiment evaluates whether a domain-specific model, PubMedCLIP, outper-
forms the general-purpose CLIP model in biomedical retrieval tasks, using CombMAX. As
shown in the bottom portion of Table 1, the goal is to determine if fine-tuning a model for
a specific domain yields better results than a model pre-trained on diverse data.

While statistical significance is limited, PubMedCLIP generally performs better, partic-
ularly in retrieving abstracts and article images. Its improvements suggest stronger domain
alignment, especially in extracting abstract-level semantics and visual information. How-
ever, inconsistent effectiveness across certain queries, reflected in lower GM-MAP, indicates
challenges in handling difficult or ambiguous topics.

In summary, the results show that the domain-specific model (PubMedCLIP) out-

performs the general-purpose model (CLIP) for biomedical searches, achieving
higher effectiveness in retrieving relevant cases.

5.4 Unimodal vs. Multimodal effectiveness

The fourth experiment evaluates whether a unimodal text model, Llama, can outperform a
multimodal model, CLIP, using the CombMAX fusion method. Since Llama handles only
textual input, it is evaluated solely on text-based searches, while CLIP also includes mixed
and visual comparisons (see bottom of Table 1) to assess the effectiveness of unimodal
compared to multimodal models.
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Llama generally outperforms CLIP across most textual inputs, particularly with longer
texts like abstracts and fulltexts, reflecting its stronger language modeling capabilities and
training on longer contexts. The observed medium effect sizes suggest that these improve-
ments are not only statistically significant but also practically meaningful. A clear example
is topic 29, where Llama ranked a relevant article at the top, while CLIP placed it at
309. The key factor is context length: CLIP’s 77-token limit only covered the introduc-
tion, missing critical content, whereas Llama, with its 8,192-token capacity, processed the
entire article, including two case studies and conclusions. This enabled a deeper semantic
understanding, crucial to determining the relevance of the article to this case description.

While CLIP performs slightly better on short texts like titles, Llama surprisingly sur-
passes it on image captions as well, possibly due to CLIP’s limited token capacity when
handling complex topic descriptions.

Overall, Llama consistently outperforms CLIP in nearly all textual sections,
as well as in mixed and visual searches. Llama’s superior effectiveness highlights its
strength with purely textual content, while CLIP’s multimodal capabilities offer no signifi-
cant advantage in this context. This supports the hypothesis from Section 3.1 that textual
information is prioritized over visual content for this task under evaluation.

5.5 Dominant data type approach

The fifth experiment assesses whether converting visual content into text and prioritizing
text can outperform a multimodal approach. This is tested by comparing searches using
existing topic sections with those using LLaVa-generated image descriptions (labeled “Gen.
I. Desc.”). While the focus is on the effectiveness of these generated descriptions, mixed
searches that combine them with article images are also analyzed to assess multimodality
against unimodality. Instead of relying solely on the text-only Llama model, all models
are tested using the CombMAX fusion method. To ensure fair comparisons, each setup is
assessed against the corresponding model with statistical relevance tests conducted against
the “Topic Description” and “Images” sections. Results show that nearly all metrics are
statistically significant for at least one baseline, supporting multiple significant conclusions.

The generation of image descriptions imposed a token limit of 1024 per image to ensure
detail and prevent truncation, but actual token counts ranged from 47 to 133, averaging
79 tokens. Descriptions typically began with high-level features, such as color or subfigure
count, and then moved on to more specific details within the image. However, the evaluation
revealed mixed accuracy due to the model’s lack of medical domain fine-tuning, resulting
in some errors and inconsistencies. Additionally, a recurring issue was the inconsistency
between the topic-generated image descriptions and the image captions, differing in detail,
wording, length, and intent. This mismatch, shown by an example in Figure 1, contributed
to the observed effectiveness differences.

For CLIP and LongCLIP, visual searches consistently outperformed those using gener-
ated descriptions, suggesting that these text surrogates fail to capture the necessary detail
or alignment with article content, potentially due to errors in the description generation pro-
cess and varying levels of detail. PubMedCLIP showed some improvement when comparing
generated descriptions to article abstracts, but effectiveness dropped sharply in visual com-
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(a) Query image example with LLaVa-generated description: (b) Article image example with
“The image is a black and white medical image of a person’s caption: “CT scan showing an
abdomen, likely an X-ray or CT scan. The abdomen is filled adrenal metastasis to the con-
with various organs, including the liver, spleen, and pan- tralateral gland, 2 years after a
creas. The liver is located on the left side of the image, while right nephrectomy for primary
the spleen is situated in the middle, and the pancreas is on RCC.”.

the right side. There is a small arrow pointing towards the
right side of the image, possibly indicating a specific area of
interest or a point of reference. The overall image provides
a detailed view of the internal organs within the abdomen.”.

Figure 1: Example of similar abdominal CT scan images, both showing an arrow pointing to
a region but with completely different descriptions in terms of wording and medical detail.

parisons. Llama, relying solely on text, also performed worse with generated descriptions
than with original topic descriptions, likely due to differences in wording mentioned above.
The experiment assessed whether using text as the dominant data type could outperform
a multimodal baseline. While a comparison between the unimodal Llama model and the
multimodal CLIP model was obvious, intended to test text-only versus multimodal effec-
tiveness, it was not entirely fair due to differences in models and augmented data. Results
showed that Llama with generated image descriptions did not surpass CLIP, though the
comparison is inequitable. The experiment suggests that comparing article images with
generated captions and topic images could further explore whether visual searches have
an advantage over mixed searches, as in the previous experiment the multimodal approach
showed no advantage over the unimodal. However, in this experiment, all textual searches
using generated descriptions performed worse than their multimodal baselines,
likely due to limitations in the generated data. Additionally, the misalignment be-
tween topic and article captions hindered effectiveness, supporting prior conclusions that
topic and article images differ significantly. Despite this effectiveness disparity, CLIP and
LongCLIP performed best in visual searches, while PubMedCLIP excelled in comparisons
involving topic images and article captions, benefiting from medical domain fine-tuning.

5.6 Comparative analysis against top submissions

To contextualize the effectiveness of our retrieval system, we compare it to the top submis-
sions from the ImageCLEFmed 2013 case-based retrieval task. However, this comparison
is not entirely fair due to differences in evaluation methodology. In a typical ImageCLEF
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Table 3: Top submissions from ImageCLEFmed 2013 Case-based retrieval task (2013) along-
side our highest scores for the same task. Asterisk (*) mark results discussed in Section 6.

Runid | Retrieval type | MAP GM-MAP bpref P10 P30

.g SNUMedinfo9 (Choi et al. 2013) Textual 0.2429 0.1163 0.2417 0.2657 0.1981
o FCT_CB_MM_rComb (Mourao et al. 2013) Mixed 0.1608 0.0779 0.1426 0.1800 0.1257
g FCT_SEGHIST _6x6_LBP (Mourao et al. 2013) Visual 0.0281 0.0009 0.0335  0.0429  0.0238
. @ Llama CombMAX (desc. & cap.) Textual 0.0686 0.0123 0.1171  0.1057  0.0667
O; E‘J PubMedCLIP CombMAX (img. & cap.) Mixed 0.0224 0.0041 0.0760  0.0457  0.0314

S PubMedCLIP CombMAX (img. & img.) Visual 0.0530 0.0057 0.1011 0.0714 0.0429

5 Llama CombMAX (desc. & cap.) Textual 0.1210 0.0301 0.1171  0.1629  0.1267
£ é PubMedCLIP CombMAX (img. & abs.) Mixed 0.0767 0.0144 0.0832 0.1514  0.1229
© % PubMedCLIP CombMAX (img. & img.) Visual 0.0967 0.0134 0.1011 0.1257 0.1105
. E Llama CombMAX (desc. & full.) Textual 0.0419 0.0293 0.0733  0.1657  0.1448
£ £ CLIP CombMAX (img. & title) Mixed 0.0229 0.0130 0.0425  0.1143  0.0905
° g PubMedCLIP CombMAX (img. & img.) Visual 0.0282 0.0146 0.0515 0.1257 0.0914

evaluation campaign, the top 30-60 results from each submitted run are merged to create
judgment pools of approximately 1,000 cases per topic, which are combined to create pools
of approximately 1,000 cases per topic, which are then manually assessed (Kalpathy-Cramer
et al., 2015). Since our retrieved documents were not included in this pooling process, only
an average of 19.73% of our retrieved articles were judged across all topics, introducing a
considerable margin of uncertainty in the effectiveness evaluation.

As shown in Table 3, even our best-performing setup falls significantly behind the top
submissions, but we achieved better results in purely visual searches using all the studied
multimodal models (CLIP, LongCLIP, PubMedCLIP) compared to top visual submission,
which relied on sparse feature extraction methods. This suggests that dense approaches
can capture more relevant information. However, in mixed and textual searches, our sys-
tem significantly underperformed. The top submissions enhanced their text components
using an external corpus (MEDLINE) to perform term expansion, contributing to their
success. Although we used a somewhat similar approach using the medical-specific model
(PubMedCLIP), its inherent token capacity limitations prevented it from handling the large
textual sections effectively, likely explaining the discrepancies in retrieval effectiveness.

5.7 Summary

From the five experiments, we can draw several conclusions. The majority of the effect sizes
fall within the small and medium ranges. No large effects (d, > 0.8) are observed, indicating
that while meaningful differences exist, they are generally modest. We begin by analyzing
the overall results shared across all experiments and summarizing the key findings.

In the ImageCLEFmed 2013 case-based retrieval task, a total of 709 documents were
judged as relevant and 14,319 as non-relevant across 35 query topics, with between 372 and
480 documents judged per topic, covering only about 0.57% of the 75,000 article collection
per query topic. This small sample size, due to the pooling technique, may limit the com-
pleteness of relevance assessments. Ideally, all documents should be judged to ensure a more
accurate evaluation, as unjudged documents are often assumed non-relevant (Clough and
Sanderson, 2013), potentially overlooking relevant ones and affecting retrieval effectiveness.
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Our overall results are lower than the top submissions of the task. The bpref measure
consistently yields better results than MAP across all experiments, indicating that more
unjudged documents were retrieved, some of which could be relevant. On average, no more
than 19.73% of our retrieved articles were judged across all topics, limiting the evaluation.
While bpref accounts for incomplete relevance judgments, it only focuses on the ranking of
relevant over non-relevant documents. The highest percentage of judged retrieved articles
corresponds with the highest MAP achieved, suggesting that unjudged articles might be
relevant. Conversely, the lowest percentage of judged articles resulted in our lowest MAP
score (0.0002), yet it did not show the lowest bpref measure. This difference highlights the
known property of MAP, which treats all unjudged articles as non-relevant, while bpref
handles incomplete judgments by considering only on judged documents.

From all the experiments, we conclude that for the dataset used, CombMAX is the
best fusion method out of the ones tested (Exp. 1). Context length affects effectiveness
(Exp. 2), showing both advantages and disadvantages based on the input data. Domain-
specific models are better suited for their respective domains (Exp. 3). Text-based models
can outperform multimodal models when text is the primary information source (Exp. 4).
Finally, text searches based on generated descriptions significantly underperform those using
the original model on both text and visuals, probably due to limitations in the augmented
topic section (Exp. 5).

6 Mitigating incomplete judgments

Many missing judgments in the ground truth may affect reliability of results and conclusions.
This can be addressed by adapting the evaluation or expanding the ground truth.

Adapting the evaluation focuses on the subset of the dataset with existing ground truth.
This approach, explored in Section 6.1, evaluates system effectiveness within this subset,
providing a partial but informative picture. It is a simple, practical method using existing
data, but it has limitations. The evaluation assumes that the subset represents the entire
collection, which requires careful interpretation as it does not provide a complete evaluation.

Expanding the ground truth can be achieved through manual or semi-supervised tech-
niques. While manual annotation is the most straightforward method, it is often infeasible
due to the need for domain experts, as well as its time-intensive and costly nature. In
contrast, semi-supervised learning involves using a small labeled dataset to train a model
that predicts relevance for unlabeled documents. This method, explored in Section 6.2, can
efficiently label large datasets with minimal manual effort, but its accuracy heavily depends
on the quality of the initial labeled data and the model’s generalization capabilities.

6.1 Retrieval on judged documents

Using trec_eval, we re-ranked our runs and excluded all unjudged documents from the
retrieved set, enabling us to calculate metrics solely based on the judged documents, whether
relevant or non-relevant. Table 4 presents the overall results for all experiments, considering
only the judged documents in the retrieval set. Effect sizes, standard errors, and 95%
confidence intervals are also reported for all statistically significant comparisons in Table 2
under “Subset”. We analyze these results and compare them with those obtained without
excluding unjudged documents, as discussed in Section 5.
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As expected, the bpref values remain unchanged since this metric already excludes
unjudged documents, aligning with this new approach. However, the other metrics (MAP,
GM-MAP, P10, P30) consistently improve over the previous results. Notably, the MAP
reaches 0.1210—mnearly twice the highest MAP when unjudged documents are included.
Precision also stands out, reaching 0.1714 for P10 and 0.1562 for P30.

Overall, the scores approach those of the best-submitted runs, particularly for mixed
retrieval. While our approaches outperform visual retrieval, they remain below the top
textual retrieval submission, as seen in the “Ours subset” section of Table 3.

Since we did not have access to the top submitted runs from the ImageCLEF 2013
competition, it was not possible to re-rank or directly evaluate our models against those
exact submissions. Instead, by evaluating only on the official judged pool of ImageCLEF
2013, our leave out unjudged results scenario ensures a consistent and fair comparison, as it
uses the same set of documents assessed in the original campaign. This approach mitigates
biases from unjudged documents and aligns our evaluation methodology with the official
judging process as closely as possible, reinforcing the validity of our comparisons.

Importantly, the analysis of retrieval effectiveness considering only judged documents
confirms that the conclusions presented in response to the research questions remain consis-
tent and valid. The main trends observed in model effectiveness and fusion strategies hold
true under this evaluation strategy, supporting the robustness of our findings.

6.2 Using expanded relevance judgments dataset

We expanded the ImageCLEFmed 2013 case-based retrieval task relevance judgments (qrels)
dataset using an MLLM-as-a-Judge approach (Pires et al., 2025), which used Gemini 1.5
Pro to simulate human assessment, increasing the original qrels from 15,028 to 558,653
relevance judgments. Table 5 presents the overall results for all experiments using the
expanded dataset, which we analyze and compare to those from the original qrels. We
also report effect sizes, standard errors, and 95% confidence intervals for all statistically
significant comparisons in Table 2 under “Expanded Qrels”.

Overall, the expanded grels yield 16 statistically significant results, one more than the
original qrels. The findings align with previous observations, reinforcing key observations:
CombMAX emerges as the most effective result fusion method in this medical context;
different context lengths impact effectiveness, but LongCLIP’s larger context does not con-
sistently outperform shorter ones, as seen with CLIP; the domain-specific PubMed CLIP
surpasses the general-purpose CLIP for biomedical searches; the Llama model consistently
outperforms the CLIP model; and all textual searches using generated descriptions under-
perform compared to their multimodal baselines.

Compared to the results with the original qrels, some MAP values show an increase, but
the improvement is not substantial. Notably, Llama continues to achieve the highest MAP
when comparing topic descriptions with article captions. However, the top MAP value is
still seen with the original grels. In contrast, GM-MAP, P10, and P30 consistently show
clear improvements, while bpref exhibits a substantial decline across all experiments.
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The slight variation in MAP values can be attributed to the nature of the expanded judg-
ments dataset. Despite a significant increase in the number of judgments, approximately
99% were labeled as not relevant. Among all the gathered metrics, MAP and GM-MAP
are the most affected by dataset imbalance, as they depend on the ranking of relevant
documents across the entire retrieved list. In contrast, precision focuses only on a fixed
number of top-ranked results (e.g., top 10 and top 30), making it less sensitive to overall
dataset distribution. While bpref is designed to mitigate the impact of missing relevance
judgments, it is still influenced by dataset imbalance due to the limited number of relevant
documents in the ranked list. Since most of the previously excluded unjudged documents
are now considered non-relevant, a decline in metric values was expected.

Compared to the top submission of the ImageCLEFmed 2013 competition, we highlight
the precision values listed under the “Ours expanded” section of Table 3, which closely ap-
proach the top mixed retrieval results. This indicates that the number of relevant documents
retrieved in the top 10 and 30 results is similar to the top submissions.

7 Conclusions

To the best of our knowledge, our paper is the first to apply dense models to multimodal
medical case retrieval. Our work investigates the effectiveness of different dense-model ap-
proaches in improving multimodal ad hoc search, focusing on retrieving articles relevant to
medical differential diagnosis. The findings underscore the limitations of the dataset in a
dual-modality search scenario, as incorporating visual data did not enhance retrieval effec-
tiveness. The lack of improvement in retrieval effectiveness was likely due to the physician
assessors’ preference for textual information. Most documents in the judgment pool were
retrieved through textual searches (33 submissions), while far fewer submissions focused on
visual (5 submissions) or multimodal (4 submissions) tasks. This aligns with the experimen-
tal results, which revealed a clear emphasis on text-based retrieval in the retrieved article.
Compounding the issue, no more than about 20% of our retrieved articles across all topics
were initially judged, leaving a substantial margin of uncertainty in the evaluation process.

We addressed the challenge of highly incomplete relevance judgments by adapting the
evaluation by excluding unjudged documents from our retrieval sets, and using an expanded
relevance judgment set that covered all missing judgments across experiments. These strate-
gies led to major improvements, with increases in nearly all metrics, especially precision,
bringing scores closer to top submissions. Importantly, the overall findings remain consistent
with those obtained using the original qrels, reinforcing their robustness.

To answer RQ1: “Which characteristics of dense models have the greatest impact on re-
trieval effectiveness in multimodal search systems?” the results indicate that various dense
model characteristics influence retrieval effectiveness. Context length plays a crucial role,
with different lengths offering both advantages and disadvantages depending on the input
data. Truncated versions of larger texts were used due to the models’ token limits, po-
tentially omitting important information. The Llama 3 model, which has the largest token
capacity among the models tested, attained the highest MAP in Experiment 4 (Unimodal vs.
Multimodal effectiveness), demonstrating the value of larger context lengths. Additionally,
domain-specific models significantly improved retrieval effectiveness over general-purpose
models.
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To answer RQ2: “How does the effectiveness of dense multimodal models compare to
traditional search systems in medical case retrieval, and what factors influence their relative
effectiveness?”, the experiments suggest that dense retrieval holds great potential, partic-
ularly for semantic similarity searches across different modalities. However, limitations in
context length hinder effectiveness, as multimodal models are often trained on shorter in-
puts, resulting in lower effectiveness than top submissions. Nonetheless, our approaches
excelled in visual retrieval, suggesting that a multimodal large language model, especially
if fine-tuned for the medical domain, could greatly enhance effectiveness, though at a high
computational cost.

Future work could focus on improving both textual and visual data integration to en-
hance multimodal medical case retrieval. For textual data, handling large inputs more ef-
fectively through text-splitting techniques could enable a more thorough analysis, as Llama,
despite its large context length, struggles with longer instances. Splitting fulltexts into logi-
cal sections and encoding them separately may improve retrieval effectiveness. Additionally,
testing a unified description generator, such as LLaVA or a fine-tuned variant for the med-
ical domain, could help resolve inconsistencies observed in the fifth experiment (Dominant
data type approach) due to different generators. On the visual side, exploring medical im-
age modality classification to filter out non-relevant images and compound figure separation
to isolate relevant subfigures could reduce retrieval noise. As suggested by Garcia Seco de
Herrera et al. (2015), these techniques have the potential to improve case-based retrieval
but require further investigation and integration. Finally, integrating the top-performing
textual and visual search methods, combining sparse and dense models, could further en-
hance the accuracy and effectiveness of multimodal search systems. Future studies could
also extend experiments to additional datasets, reinforcing the findings and broadening ap-
plicability. Additionally, topic-level analysis of system behavior remains important future
work to better understand model strengths and limitations across different query topics.
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