Information Retrieval Research 1 (2025) 3-27

Submitted 10/24; Revised 12/24; Published 02/25

On the challenges of studying bias in Recommender Systems:
The effect of data characteristics and algorithm configuration

Savvina Daniil
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Manel Slokom
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Mirjam Cuper
National Library of the Netherlands
The Hague, The Netherlands

Cynthia C.S. Liem
Delft University of Technology
Delft, The Netherlands

Jacco van Ossenbruggen
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Laura Hollink
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Editor: Shangsong Liang, Djoerd Hiemstra

S.DANIILQCWI.NL

M.SLOKOM@CWI.NL

MIRJAM.CUPER@QKB.NL

C.C.S.LIEM@TUDELFT.NL

JACCO.VAN.OSSENBRUGGEN@VU.NL

L.HOLLINKQCWI.NL

Abstract

Statements on the propagation of bias by recommender systems are often hard to verify
or falsify. Research on bias tends to draw from a small pool of publicly available datasets
and is therefore bound by their specific properties. Additionally, implementation choices
are often not explicitly described or motivated in research, while they may have an effect
on bias propagation. In this paper, we explore the challenges of measuring and reporting
popularity bias. We showcase the impact of data properties and algorithm configurations on
popularity bias by combining real and synthetic data with well known recommender systems
frameworks. First, we identify data characteristics that might impact popularity bias, and
explore their presence in a set of available online datasets. Accordingly, we generate various
datasets that combine these characteristics. Second, we locate algorithm configurations
that vary across implementations in literature. We evaluate popularity bias for a number
of datasets, three real and five synthetic, and configurations, and offer insights on their
joint effect. We find that, depending on the data characteristics, various configurations
of the algorithms examined can lead to different conclusions regarding the propagation
of popularity bias. These results motivate the need for explicitly addressing algorithmic
configuration and data properties when reporting and interpreting bias in recommender
systems.

Keywords: Recommender Systems, Bias, Data Synthesis, Reproducibility

(©2025 held by the author(s) License: CC-BY 4.0 WWW: https://irrj.org DOI: 10.54195/irrj.19607

SAVVINA DANIIL ET AL.

1 Introduction

Recommender systems are commonly used as a tool to encode taste based on the information
available, be it user history or metadata. The wide use of recommender systems necessitates
critical reflection on the issues that may arise when we allow automation to dictate our
exposure to information. Specifically, bias in recommender systems is a topic of interest
within the scholarly community. Bias is a complex term that can refer to various types of
biases associated with interactions between users and items in a given system (Chen et al.,
2023).

Many studies have focused on measuring the phenomenon of popularity bias in collabo-
rative filtering systems (Klimashevskaia et al., 2024; Ahanger et al., 2022; Elahi et al., 2021;
Yalcin, 2021; Abdollahpouri, 2020; Zhao et al., 2022). Despite this large research effort to
track and mitigate popularity bias, there is no univocal message regarding why and when it
occurs. In previous work, we found that studies that measure popularity bias propagated by
commonly used algorithms on benchmark datasets report varying, sometimes contradicting
results (Daniil et al., 2024). This observation raises questions; is popularity bias sensitive
to properties of the system that do not receive sufficient attention? Why is a seemingly
simple phenomenon so hard to study? Additionally to the evaluation strategy which was
the focus of our previous work, we hypothesize that two factors that also complicate bias
measuring and reporting are data characteristics and algorithm configuration.

Data characteristics Benchmark datasets are useful for academic research, as they al-
low researchers to evaluate their hypotheses and compare their proposed debiasing methods.
However, their consistent use raises concerns that relate to the dependence on the domain
and source they were constructed from, and the potentiality for blind spots that stem from
outdated rating behaviour. Most importantly, by reporting on types of bias on only a small
set of publicly available datasets, researchers are restricted by their specific characteristics.
This specificity limits the scope of research, and obfuscates the process of examining causal-
ity. In other words, it is not trivial to conclude whether the propagation of bias or lack
thereof is a result of the respective algorithm’s functionality, or of certain intricate details
of the user-item interactions within these datasets. Data synthesis based on assumptions
can potentially assist with shedding light on the aforementioned blind spots and gaining
new insights into bias in recommender systems.

Algorithm configuration Insufficient reporting of algorithm configuration leads to a
reproducibility problem within research on recommender systems. Studies have shown
that papers published in big conferences often do not disclose sufficient information for
replication and verification (Ferrari Dacrema et al., 2021). This issue is also relevant in the
bias discussion. Even relatively simple algorithmic approaches, such as neighbour-based
ones, are constructed using hyperparameters and implementation choices that might affect
whether bias propagation is observed. The RecSys community proposes a set of evaluation
frameworks to promote reproducibility!, but there are important configuration differences
between them that often go unmentioned (Bellogin and Said, 2021). Testing the effect of
algorithm configuration can be a means of reporting on bias in a comprehensive manner.

1. https://github.com/ACMRecSys/recsys-evaluation-frameworks

https://github.com/ACMRecSys/recsys-evaluation-frameworks

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

In this paper, we experiment with data characteristics and algorithm configurations and
observe the effect on popularity bias. First, we look into data characteristics that might have
an impact on popularity bias given a rating prediction and top-10 recommendation task, a
common setup among recent studies on popularity bias (Naghiaei et al., 2022; Kowald et al.,
2020; Kowald and Lacic, 2022). Specifically, we delve into the relation between popularity
and rating, as well as the preferences of users with large profiles. We analyze these charac-
teristics for three real datasets: a subset of Book-Crossing (Ziegler et al., 2005) constructed
by Naghiaei et al. (2022), MovieLens1M (Harper and Konstan, 2015) and Epinion (Massa
and Avesani, 2007). Additionally, we form a set of data scenarios by tweaking and combin-
ing these characteristics. For each scenario, we generate a corresponding synthetic dataset
of ratings, based on the interactions from the subset of Book-Crossing. Second, for a set of
algorithms we identify configuration choices that may impact whether or not popularity bias
is observed. We study three widely used algorithms, UserKNN, Biased Matrix Factorisation
and Deep Matrix Factorization, implemented in three frameworks recommended by ACM
RecSys, LensKit (Ekstrand, 2020), Cornac (Salah et al., 2020), and Elliot (Anelli et al.,
2021). We perform the recommendation process for the subset of Book-Crossing, Movie-
Lens1M and Epinion, as well as each synthetic dataset with varied algorithm configuration
choices. We apply commonly used popularity bias metrics to evaluate the recommended
lists, as well as RMSE and NDCG@10 to estimate the performance of the algorithms when
it comes to rating prediction and ranking.

Our results show that whether popularity bias is observed, and to what extent, depends
on much more than the algorithm that was used, or the domain in which a study is carried
out: all algorithms that we tested were seen to strongly propagate popularity bias in some
experimental settings, while not propagating popularity bias in other settings. The same
is true for datasets: all datasets led to bias in some settings and not in others. The results
further clarify that whether or not popularity bias is observed depends on, firstly, specific
(often unreported) configuration and implementation details of algorithms. The implication
of that is that the choice for a certain framework largely impacts the outcome of a study.
It also depends, secondly, on characteristics of the dataset that is studied; specifically, the
relationship between rating and popularity, as well as the preferences of users with large
profiles are crucial when it comes to popularity bias propagation. Finally, it is especially
the interplay between algorithm configuration and dataset characteristics that determines
whether popularity bias will be observed or not.

The contributions of this paper are as follows:

e a systematic investigation into the effect of data characteristics on popularity bias, by
comparing results on three commonly used datasets as well as five synthetic datasets
for which we control the properties.

e a systematic investigation into the effect of implementation differences, by compar-
ing results of algorithm configurations as well as non-configurable implementation
differences in well known frameworks.

e for the more interpretable algorithms, we highlight notable results among the many,
to give insights into why certain combinations of dataset characteristics and algorithm
configurations lead to popularity bias.

SAVVINA DANIIL ET AL.

With this work, we wish to contribute to the field by highlighting and disentangling the
challenges in studying popularity bias in recommender systems.

2 Related Work

In this section, we provide a brief overview of existing work on bias in recommender systems
and datasets and reproducibility.

2.1 Bias in Recommender Systems

Recommender systems are not immune to bias, even when only user consumption history
is fed to the model and not other information about the users or items. Edizel et al. (2019)
discuss that a model might learn sensitive information like the gender of the user in the
latent space, and produce recommendations that are gender-dependent, even more so than
the interactions observed in the training set itself. In a survey on the topic of bias and debias
in recommender systems research, Chen et al. (2023) identify three factors that contribute
to bias: user behavior’s dependence on the exposure mechanism of the system, imbalanced
presence of items (and users) in the data, and the effect of feedback loops. One type of bias
that arises from the interaction between an algorithm and imbalanced data is popularity
bias.

Popularity bias is the phenomenon where popular items (i.e., items that are frequently
interacted with in the dataset) are recommended even more frequently than their popularity
would warrant (Abdollahpouri and Mansoury, 2020). It is commonly believed to be caused
by the long-tail distribution that often characterizes user-item interactions: most items have
been rated by only a few users, and a few items have been rated by many users (Brynjolfsson
et al., 2006). Various studies have reported that frequently used recommender systems
algorithms are prone to propagating popularity bias existing in the dataset they were trained
on (Abdollahpouri et al., 2019b; Kowald et al., 2020; Naghiaei et al., 2022). Different
metrics have been proposed to quantify popularity bias (Abdollahpouri et al., 2019b, 2017).
Despite the extensive literature, our understanding of why certain algorithms and datasets
are more or less prone to popularity bias is limited. In a systematic work, Deldjoo et al.
(2021) used regression-based modeling to explain accuracy and fairness exhibited by a set of
collaborative filtering algorithms through the lens of data characteristics such as rating and
popularity distribution. In this paper, we describe scenarios of data-algorithm interaction
and report the results of different metrics associated specifically with popularity bias.

2.2 Datasets and Reproducibility

The way that recommender systems researchers usually test their hypotheses, novel algo-
rithms, and metrics is by conducting experiments on one or more publicly available datasets
of user-item interactions. Surveys on the topic of recommender systems research show that
the pool of datasets used is small (Bobadilla et al., 2013); user behavior data from real-
world applications such as media platforms is often proprietary and therefore cannot be
used for benchmarking (Khusro et al., 2016). In popularity bias studies, the use of different
versions of MovieLens is exceedingly common (Wang et al., 2023), which leads us to wonder
whether studies can be conclusive when they are carried out solely on a few datasets. In

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

our approach, we include a data synthesis step that allows us to experiment with different
data distributions and observe the result. Synthetic data serves multiple purposes, each
with its own specific requirements and evaluation setup (Slokom and Larson, 2021). Data
synthesis is a much-discussed topic in recommender systems research, often explored in the
context of privacy (Slokom, 2018; Tso and Schmidt-Thieme, 2006). Additionally, studies
have employed data simulation to measure bias in recommender systems under varying data
properties (Bellogin et al., 2017).

The existence of datasets for training and testing is valuable for the recommender sys-
tems community; research on publicly available data is necessary in order to ensure repro-
ducibility (Said and Bellogin, 2014). However, as noted by Cremonesi and Jannach (2021),
sharing the used data is not always sufficient to ensure basic reproducibility. Studies showed
that in most cases recommender systems papers presented at top-tier conferences did not
provide code for their data preprocessing or hyperparameter tuning (Ferrari Dacrema et al.,
2021, 2019). This is also the case in popularity bias research; studies are often not accom-
panied by code, and sometimes do not describe the data filtering or hyperparameter setting
(Abdollahpouri et al., 2019b, 2020). Therefore, concluding that an algorithm or a dataset
is prone to popularity bias becomes challenging, as it is not possible to verify or falsify
the claims (Cremonesi and Jannach, 2021). Research has shown that the choice of hyper-
aparameters can highly impact quality metrics, including average popularity of the items
recommended (Jannach et al., 2015). At the same time, popular frameworks seem to have
important differences that translate into different performances for the same datasets given
somewhat different implementations of the same algorithm (Bellogin and Said, 2021). To
further explore this issue, we experiment with algorithms implemented in different libraries
and with different parameter configurations and evaluate popularity bias for each of them.

3 Identifying Data Characteristics and Algorithm Configurations

In this section, we identify data characteristics and algorithm configurations that can in-
fluence popularity bias propagation in the context of a rating prediction and top-10 recom-
mendation task. First, we locate data characteristics that can have an effect on whether
popularity bias is propagated, partly inspired by the functionality of UserKINN. UserKNN
is a relatively simple algorithmic approach that simulates a ‘word-of-mouth’ setting and
has lower dependence on non-intuitive parameters that impact optimization (e.g., learning
rate). Accordingly, we form a set of data scenarios that combine the located characteristics.
Second, we inspect UserKNN and two matrix factorization algorithms, one traditional and
one neural network-based, and locate configurations that can be potentially impactful for
popularity bias propagation.

3.1 Data Characteristics

Whether or not popularity bias is propagated depends on how popularity manifests in the
dataset at hand. We discuss the relation between rating and popularity and the preferences
of influential users.

Relation Between Rating and Popularity In the context of a rating prediction task,
an algorithm aims to predict a future rating for every user of every item they have not

SAVVINA DANIIL ET AL.

already consumed. Given that this is done by considering the other users’ ratings, it may
be that items with high average rating will be prioritized by the system. Popularity bias
studies often do not disclose whether the popular items in the dataset also have high ratings,
but instead assume that their frequent recommendation is solely due to their popularity.
Previous work has shown the impact of high ratings on popularity bias (Yalcin, 2021).

Influential Users In the context of UserKNN, certain users may be influential because
they neighbour with many other users. For example, if only two users have rated an item
and they have not rated any other items, then this item will not be recommended to
anyone, because the two users are not influential at all within the system. Consequently, it
is interesting to investigate the notion of user influence and whether the result is dominated
by the preferences of users who, because of their large profile size, are more likely to have
many neighbours.

3.1.1 REAL DATASETS

Figures 1a, 1b and 1c show the aforementioned characteristics for Book-Crossing, Movie-
Lens1M and Epinion, respectively. Specifically, they show the correlation between item
average rating and item popularity among all users, as well as among the users with the
20% largest profiles. We see that for Book-Crossing and MovieLens1M there is a slight
positive correlation between rating and popularity, and a negative one for Epinion. Addi-
tionally, for the first two datasets there is no obvious difference between the tendencies of
all users and the ones with large profiles, while the users with large profiles in Epinion are
less favourable towards the popular items than the entire set of users. Table 1 shows the
number of users, items, and interactions, and sparsity for each of the datasets.

Table 1: Basic characteristics of the real datasets. The synthetic datasets share the same
characteristics as Book-Crossing.

Dataset #users F#items Fratings Sparsity
Book-Crossing (subset) 6,358 6,921 88,552 99.80%
MovieLens1M 6,040 3,706 1,000,209 95.53%
Epinion 22,164 296,277 912,441 99.99%

3.1.2 DATA SCENARIOS

We synthesize data that follows a long-tail distribution for items and users, as it is discussed
as a prerequisite for popularity bias to occur (Brynjolfsson et al., 2006; Celma and Cano,
2008). Specifically, we choose the interactions in a subset of the Book-Crossing dataset
(Naghiaei et al., 2022; Ziegler et al., 2005) as a baseline, but remove the rating values. To
reflect on the observations above, we form a set of scenarios around the relationship between
popularity, rating and user influence to assign a synthesized rating to each interaction. This
approach allows us to simulate a real-world scenario where consumption is long-tail, while
still experimenting with data properties relevant for popularity bias. We recognize that
the scenarios are not necessarily realistic. User tendencies are likely to be more subtle in
real world situations. However, we believe that experimenting with extreme behaviors can

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

- 54
10 5
(o)} (o)}
g £ £
= 8 = =
© C 4 e
() ()
> 6 = =4 e
o O 3 o3 e
[g g Tl T
3 4 5 5 RN
£ € 21 € 27
g 2 Among all users g ¢ Among all users g Among all users
Among users with big profiles 14 Among users with big profiles 14 : Among users with big profiles
0 100 200 300 0 1000 2000 3000 0 500 1000 1500
Item popularity Item popularity Item popularity
(a) Book-Crossing (b) MovieLens1M (c¢) Epinion
10 Among all users 10 Among all users
g Among users with big profiles g 84 P g Among users with big profiles
s 8 E= e £ Fes
= © » =8 Lo
o - o s
] g 7] SN
O 61 MMM & toce L L o6 L =) Y
© = I v o o 6 .
—_ d —_ SS
g 2 - g .
© 4 o4 /,‘/, T, .
£ E | = .. W £
i 5 Lol Among all users i [N
Among users with big profiles 2
0 100 200 300 0 100 200 300 0 100 200 300

Iltem popularity Item popularity

(f) Scenario 3

Item popularity

(d) Scenario 1 (e) Scenario 2

B 10 Among all users
E 8 g Among users with big profiles
= - S o8
2 e
o 6
= &
o g o
o

v [
>4 >
© o,
1S £ !
g 2 Among all users g 3

Among users with big profiles 2

0 100 200 300 0 100 200 300

Iltem popularity

(h) Scenario 5

Item popularity

(g) Scenario 4

Figure 1: Relation between item average rating and item popularity among all users and
among users with the 20% largest profiles, given three real and five synthetic datasets.

SAVVINA DANIIL ET AL.

help us showcase the effect that we are investigating, and lead the way for more nuanced
experimentation.
The scenarios, as well as the process we followed to generate each of them are as follows:

1.

Scenario 1: There is no relation between popularity and rating: For each
interaction, draw a rating value between 1 and 10 uniformly at random. In this case,
the popularity of the item is not taken into account when a rating is generated.

. Scenario 2: Popular items are generally rated higher by the users: For each

interaction, draw a rating value between 1 and 10 from a normal distribution, where
the mean is the popularity of the item normalized between 1 and 10. Since the mean
of the rating distribution is the item’s normalized popularity, more popular items tend
to receive higher ratings.

Scenario 3: Popular items are generally rated lower by the users: For each
interaction, draw a rating value between 1 and 10 from a normal distribution, where
the mean is the opposite number of the popularity of the item normalized between 1
and 10. Since the mean of the rating distribution is the opposite number of the item’s
normalized popularity, more popular items tend to receive lower ratings.

Scenario 4: Only users with large profiles rate popular items higher: For
each interaction, draw a rating value between 1 and 10 uniformly at random. For the
users with the 20% largest profiles, replace by drawing from a Poisson distribution
where the mean is the popularity of the item normalized between 1 and 10. While
most users rate at random, users with large profiles tend to rate popular items higher.

. Scenario 5: Only users with large profiles rate popular items lower: For each

interaction, draw a rating value between 1 and 10 uniformly at random. For the users
with the 20% largest profiles, replace by drawing from a Poisson distribution where
the mean is the opposite of the popularity of the item normalized between 1 and 10.
While most users rate at random, users with large profiles tend to rate popular items
lower.

Figures 1d to 1h show the correlation between item average rating and item popularity
within the five synthetic datasets. The effects are much more pronounced than for the real
datasets. Scenario 1 shows no relation between average rating and popularity, as the ratings
were drawn uniformly at random. Scenarios 2 and 3 showcase a very positive and a very
negative correlation, respectively. For scenario 4, we see a positive correlation, which is
higher for users with large profiles, and for scenario 5 a negative correlation, which is even
lower for users with large profiles.

3.2 Algorithm Configurations

In this section, we describe the algorithm configurations examined for UserKNN and two
matrix factorization algorithms, one traditional and one neural network based.

10

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

3.2.1 USserRKNN

Despite UserKNN’s simplicity, there are configuration choices that can potentially greatly
influence the result. We identified the following: minimum similarity, the items considered
for similarity, and minimum neighbours.

Minimum Similarity It is common in UserKNN implementations that not all users
who rated an item are considered (Desrosiers and Karypis, 2010). Instead, the notion of
neighbourhood is introduced; only the users most similar to the target user are taken into
account when producing a predicted score. The filtering can be done by introducing a cut
off value of minimum similarity for consideration, among other techniques.

Items for Similarity Given a similarity metric (e.g., cosine similarity), a design choice
still has to be made on whether similarity between two users will be calculated for their full
rating vectors, or only for ratings on items these two users have in common. See (Aggarwal,
2016) for clarification.

Minimum Neighbours When the neighbourhood is constructed for a given user, then
a score is predicted for each item in a list of candidates. In some implementations, the
predicted score is not calculated for all potential items. Instead, the algorithm focuses on
items that have been rated by at least a minimum number of neighbours of the current
user.

It is worth noting that LensKit and Cornac differ when it comes to these choices as seen
in Table 2. Two of the parameters tested are not configurable in Cornac, while the third is
not configurable in either framework and is set to a different value in each of them.

Table 2: Configuration choices related to UserKNN made by LensKit for Python and
Cornac.

Configuration choice LensKit for Python Cornac
Minimum similarity Configurable (default: 0) Fixed to -1
Items for similarity Fixed to all items Fixed to common items
Minimum neighbours Configurable (default: 1) Fixed to 1

3.2.2 TRADITIONAL MATRIX FACTORIZATION

In order to experimentally inspect the effect of implementation, we focus on a matrix fac-
torization algorithm that is implemented by both LensKit and Cornac. Namely, we look
into Biased Matrix Factorization (BMF).

BMF is a type of matrix factorization used for explicit rating prediction, and it is dif-
ferently implemented in LensKit and Cornac. LensKit provides an alternating least squares
implementation of BMF, and the default solver is coordinate descent (Takacs et al., 2011)
with weighted regularization (Zhou et al., 2008). Cornac implements a stochastic gradient
descent solver for BMF (Koren et al., 2009). In both libraries, the Boolean parameter of
bias is included to signify whether user and item bias are used to predict the ratings, and
is by default set to True. Bias is an interesting parameter to investigate in the context of
popularity bias propagation.

11

SAVVINA DANIIL ET AL.

3.2.3 DEEP MATRIX FACTORIZATION

Along with BMF, we perform preliminary analysis on the popularity bias propagated by
a neural network based matrix factorization algorithm, namely Deep Matrix Factorization
(DMF). DMF uses a multi-layer perceptron to project users and items into a latent struc-
tured space (Xue et al., 2017). It takes into account explicit ratings and implicit interactions
to compute the low-dimensional vectors via a neural network architecture, and then esti-
mates the relevance of an item to a user with cosine similarity between the vectors. DMF
is not available in either Cornac or LensKit. The Elliot framework (Anelli et al., 2021)
includes an implementation of DMF that comes with a set of hyperparameters that can be
tweaked. DMF’s hyperparameters consist of latent factors, which represent the number of
units in the final MLP layer for both users and items. The regularization term controls
overfitting by penalizing large weights in the model. The learning rate determines the step
size during optimization. Finally, the similarity measure computes the relevance between
user and item embeddings using cosine similarity.

Neural network based approaches are generally understood to be less interpretable.
Therefore, predicting or even explaining the effect of their parameters on popularity bias is
nontrivial. For the purposes of this study, we experiment with the number of latent factors
in the final layer of the network, since they can affect the underfitting/overfitting of the
model, which can have an interplay with the data characteristics.

4 Experimental Setup

In this section, we describe the experiments that we run in order to determine the effect
of data characteristics and algorithm configuration on the propagation of popularity bias.
We run all experiments on a Fedora Linux 40 machine with a 24-core AMD EPYC 7401
Processor and 1TiB RAM. The code we wrote to run the experiments®® has been made
open source. For the Book-Crossing subset, the datasets MovieLens1M and Epinion, as well
as every synthetic data scenario, we perform a recommendation process given every version
of every algorithm. For UserKNN, we test the following versions given the configurations
discussed in section 3.2.1:

e Min. similarity 0, over all items, 1 min. neighbour.

e Min. similarity 0, over all items, 2 min. neighbours.

e Min. similarity -1, over all items, 1 min. neighbour.

e Min. similarity -1, over all items, 2 min. neighbours.

e Min. similarity -1, over common items, 1 min. neighbour.

For BMF, we test the LensKit and Cornac version, along with the bias parameter. For DMF,
we test the Elliot version, along with the number of factors in the final layer. For each algo-
rithm version and each dataset, we perform optimization based on RMSE by splitting the
dataset into 80-20% sets to find the best values for some of the non-fixed hyperparameters

2. https://github.com/SavvinaDaniil/DiagnosingBiasRecSys
3. https://github.com/SavvinaDaniil/Elliot

12

https://github.com/SavvinaDaniil/DiagnosingBiasRecSys
https://github.com/SavvinaDaniil/Elliot

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

of the respective version, except for DMF that we based the optimization on NDCG@Q10
since DMF does not predict rating but relevance score. The resulting hyperparameters can
be seen in our repositories. Afterwards, we divide the users into training and test users in
a 5-fold cross validated way. We make sure to use the same splits for all algorithms and all
versions. For every test user, we use 80% of their ratings for training and the remaining
20% for testing, which is an option in LensKit. We train the model on the training set.
For each user in the test set, we predict a rating for every item they have not rated in the
training set (see Trainltems in section 3.1.3 of Said and Bellogin (2014)), rank the items
based on the predicted score and recommend the top-10 items, in line with recent studies
on popularity bias.

We report on RMSE and NDCG@10 where applicable to estimate the effectiveness of
the rating prediction and ranking, respectively. We also calculate the following widely used
metrics on the recommended lists to estimate popularity bias propagation:

1. Popularity Correlation (PopCorr): The correlation between popularity in train-
ing set and recommendation frequency for every item (Kowald and Lacic, 2022).

2. Average Recommendation Popularity (ARP): The average popularity of the
items in the recommended lists (Yin et al., 2012; Abdollahpouri et al., 2019a).

3. Popularity Lift (PL): The average relative difference in popularity between the
recommended items and the items in the users’ profiles (Abdollahpouri et al., 2020).

Finally, for every dataset and algorithm we perform a Mann—Whitney U test to observe
whether there is a significant difference among configurations for ARP and PL, and include
the result in the respective tables.

5 Results

In this section, we provide insights into how algorithm configurations impact popularity bias
and performance for the different datasets by presenting the results across the set of metrics
listed in section 4. For each metric, we embolden the highest value among configurations.
For ARP and PL, we use the asterisk (*) to signify which values are significantly lower
than the highest one according to a Mann—Whitney U test with p < 0.005. We abbreviate
Book-Crossing as B-C and MovieLens1M as ML1M.

5.1 Popularity bias by UserKINN
5.1.1 REAL DATA

Table 3 shows the results when combining different UserKNN configuration choices with
the Book-Crossing subset, MovieLens1M, and Epinion.

The extent to which popularity bias propagates in the recommendation varies across
the datasets. For Book-Crossing, the algorithm performance is best when popularity bias
is high, based on both RMSE and NDCG@10. When minimum neighbours are set to 1,
there is no notable popularity bias according to all metrics. On the other hand, when
minimum neighbours are set to 2, the PopCorr and PL metrics indicate strong popularity

13

SAVVINA DANIIL ET AL.

Table 3: Popularity bias and performance of different UserKNN configurations given Book-
Crossing, MovieLens1M, and Epinion. OverCommon set to True corresponds to the Cornac
implementation, and set to False to the LensKit implementation. For each metric, we
embolden the highest value among configurations. For ARP and PL, we use the aster-
isk (*) to signify which values are significantly lower than the highest one according to a
Mann-Whitney U test with p < 0.005.

Pop ARP?T PLT RMSE| NDCG

Dataset Min Items for Min Corrt @107
Sim Similarity Nbrs

B-C -1 Common 1 0.010 0.002* -32.843* 1.739 0.001

All 1 -0.000 0.002* -38.583* 1.860 0.001

2 0.282 0.003* 15.018* 1.758 0.003

0 1 0.071 0.003* -17.740* 1.816 0.001

2 0.446 0.005 67.356 1.704 0.006

ML1IM -1 Common 1 -0.093 0.000* -99.722%* 0.910 0.000

All 1 -0.082 0.000* -99.782%* 0.906 0.000

2 -0.053 0.017* -86.270* 0.904 0.004

10 0.247 0.175 26.134 0.894 0.055

0 1 -0.050 0.010* -91.918* 0.900 0.003

2 -0.003 0.041* -67.794* 0.894 0.013

10 0.176 0.170* 21.997 0.898 0.048

Epinion -1 Common 1 0.020 0.000* 20.789* 1.154 0.000

All 1 0.023 0.000* 36.538* 1.212 0.000

2 0.173 0.001* 176.224 1.168 0.000

0 1 0.043 0.001* 65.527* 1.148 0.000

2 0.153 0.001 165.929 1.108 0.001

14

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

bias. Additionally, minimum similarity is impactful: increasing it from -1 to 0 increases
popularity bias across all metrics. Finally, which items to consider for similarity has a small
effect on all metrics, but without a clear direction.

For MovieLens1M, according to NDCG@10, ranking performance is higher than for
Book-Crossing and Epinion. For MovieLens1M, the minimum neighbours hyperparameter
of UserKNN impacts popularity bias largely, with bias increasing when more minimum
neighbours are required. In contrast to Book-Crossing, popularity bias is the highest for
minimum similarity of -1, based on all metrics. Which items to consider for similarity has
no discernible effect on popularity bias.

On Epinion, popularity bias is present for all versions of the algorithms according to
the PopCorr and PL metrics. Again, increasing minimum neighbours increases popularity
bias across metrics. The parameters of minimum similarity and which items to consider for
similarity affect popularity bias, but not largely.

It is immediately observable that popularity bias varies across the different configurations
of UserKNN with the parameter of minimum neighbours, one that is not configurable in
one of the frameworks, being especially influential. This is true for every dataset, though
the degree of popularity bias also differs between the datasets. The results indicate that
popularity bias is not unavoidable when the data follows a long tail distribution, and depends
on other characteristics of the datasets as well as the configuration of the algorithms.

5.1.2 SYNTHETIC DATA

To investigate which data characteristics could impact popularity bias propagation given
each version of UserKNN, we present the results for the synthetic datasets in table 4.

Performance varies across the data scenarios. RMSE specifically is lower for scenarios
2 and 3 compared to the other three. In these two scenarios, users tend to agree between
them on whether they like popular items or not, which facilitates the rating prediction task.
NDCG@10 is the highest for scenario 2, where popular items are highly rated by the users.
In this case, the rating prediction and ranking tasks are linked, since the highest ranked
(i.e., popular items) are also highly rated.

Popularity bias also varies across the data scenarios, and the effect depends on the
algorithm configuration. In the following paragraphs, we describe and reflect on the most
impactful effects of the interaction between data and configuration.

For scenario 1 where ratings are uniformly at random generated, there is no notable
popularity bias propagation observed when minimum neighbours are set to 1, while there is
bias when minimum neighbours is set to 2. This observation is in line with what we noted
for the real datasets, where increasing minimum neighbours results in higher popularity
bias for all datasets and metrics.

In scenario 3 where all users agree that popular items are bad, popularity bias is not
propagated when minimum similarity is set to 0. However, when setting minimum similar-
ity to -1, we can observe popularity bias propagation across all metrics. The reason is that
users with completely different opinions are considered and their opinions count negatively.
Therefore, popular items still get recommended since everyone’s “negative” neighbours dis-
like them, and we can observe popularity bias propagation across all metrics.

15

SAVVINA DANIIL ET AL.

Table 4: Popularity bias and performance of different UserKNN configurations given syn-
thetic data based on different data scenarios. OverCommon set to True corresponds to the
Cornac implementation, and set to False to the LensKit implementation. For each metric,
we embolden the highest value among configurations. For ARP and PL, we use the aster-
isk (*) to signify which values are significantly lower than the highest one according to a
Mann-Whitney U test with p < 0.005.

Pop ARP?T PLT RMSE| NDCG

Data Min Items for Min Corr? @107
Scenario Sim Similarity Nbrs

Scenario 1 -1 Common 1 0.004 0.002* -35.746%* 3.337 0.001

All 1 0.018 0.002* -32.285%* 3.502 0.001

2 0.418 0.004* 21.252* 3.352 0.003

0 1 0.101 0.003* -12.827* 3.624 0.002

2 0.615 0.005 65.440 3.464 0.005

Scenario 2 -1 Common 1 0.604 0.015* 305.197* 1.150 0.013

All 1 0.596 0.021* 426.621* 1.188 0.019

2 0.614 0.022* 447.618* 1.190 0.021

0 1 0.552 0.027 632.300 1.040 0.023

2 0.562 0.027 591.966 1.026 0.025

Scenario 3 -1 Common 1 0.522 0.006* 151.686* 1.151 0.001

All 1 0.559 0.008* 187.197* 1.182 0.002

2 0.728 0.008 192.127 1.182 0.002

0 1 0.025 0.002* -35.765%* 1.044 0.001

2 0.161 0.003* -13.100%* 1.034 0.004

Scenario 4 -1 Common 1 0.184 0.003* 8.669%* 2.458 0.001

All 1 0.253 0.003* 23.063* 2.502 0.001

2 0.772 0.006% 97.490%* 2.404 0.004

0 1 0.588 0.008* 164.549* 2.500 0.004

2 0.701 0.014 297.047 2.386 0.010

Scenario 5 -1 Common 1 0.057 0.002* -16.243* 2.783 0.001

All 1 0.087 0.003* -7.924* 2.880 0.001

2 0.623 0.005* 57.969 2.776 0.003

0 1 0.136 0.003* -16.122%* 2.914 0.003

2 0.612 0.005 42.849 2.794 0.006

16

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

When considering only common items to calculate similarity, users with smaller profiles
have a larger influence. This is relevant in scenario 4 where users with large profiles like
popular items. Table 4 shows that even though scenario 4 still leads to popularity bias,
considering only common items reduces it across all metrics. Therefore, this implementation
choice can have a big impact on whether popularity bias is propagated and to what extent.

Finally, the value for minimum neighbours largely influences popularity bias. Across
almost all scenarios and metrics, increasing minimum neighbours from 1 to 2 leads to
increased popularity bias. By setting a higher neighbour barrier for considering an item
for recommendation, it follows that less popular items will be disadvantaged. This result
is particularly relevant given that the parameter of minimum neighbours could only be
tweaked in one of the considered frameworks, so studies that use Cornac or LensKit might
reach different conclusions on the extent of popularity bias propagated by UserKINN.

Popularity bias manifests differently in different datasets; an explanation for this can be
found in data characteristics, specifically the relation between item ratings, item popularity,
and the influence of users with large profiles. All three configuration choices affect the
observed bias, as they influence the weight of each user’s preference.

5.2 Popularity bias by Matrix Factorization algorithms

5.2.1 REAL DATA

Table 5 shows the results for BMF, trained on Book-Crossing, MovieL.ens1M and Epinion.
Table 5: Popularity bias and performance on the Book-Crossing, MovieLens1M and Epinion
datasets given different BMF implementations. For each metric, we embolden the highest
value among configurations. For ARP and PL, we use the asterisk (*) to signify which

values are significantly lower than the highest one according to a Mann—Whitney U test
with p < 0.005.

Bias Pop ARPYT PLT RMSE] NDCG

Dataset Framework parameter Corrt @107
B-C Cornac False -0.015 0.001* -68.639* 1.587 0.001
True 0.003 0.002* -40.168* 1.535 0.001

Lenskit False -0.013 0.002* -58.518%* 1.762 0.004

True 0.108 0.005 46.533 1.560 0.004

MLIM Cornac False 0.266 0.193 35.186 0.856 0.064
True 0.234 0.192 35.859 0.856 0.059

Lenskit False 0.151 0.125*% -14.392* 0.860 0.038

True 0.183 0.155* 7.987* 0.866 0.040

Epinion Cornac False 0.001 0.000* -53.845* 1.152 0.000
True 0.009 0.001* 19.814* 1.029 0.000

Lenskit False 0.020 0.001* -54.107* 1.240 0.000

True 0.126 0.003 402.394 1.030 0.001

17

SAVVINA DANIIL ET AL.

BMF tends to have a better performance than UserKNN overall. Popularity bias varies
across the LensKit and Cornac implementations of BMF. Also very notable is the effect of
the bias parameter.

For Book-Crossing, in both implementations the bias parameter increases popularity
bias. For example, PopCorr on Book-Crossing with LensKit is —0.013 with bias set to False
and 0.108 with bias set to True, as seen in Table 5. Specifically, the LensKit implementation
with the bias parameter set to True is the only version where there is a positive popularity
correlation, as well as positive popularity lift, with the difference being significant.

For MovieLens1M, there is higher popularity bias across metrics when the Cornac im-
plementation is used. Additionally, the bias parameter changes PL from negative to positive
when the LensKit implementation is used.

For Epinion, there is higher popularity bias across metrics when the LensKit implemen-
tation is used. The bias parameter is also very influential, as setting it to True results in
higher popularity bias across all metrics, given both implementations, as was the case for
Book-Crossing.

We see that the choice for a framework - LensKit or Cornac - largely determines whether
popularity bias is observed when using a Matriz Factorization algorithm on widely used
datasets, and the effect differs per dataset. In addition, setting the bias parameter of these
algorithms impacts to what extent popularity bias is observed.

5.2.2 SYNTHETIC DATA

Additionally to the conclusions drawn from the results on the real datasets, to observe
whether the data scenarios influence popularity bias propagated by BMF and the impact
of the bias parameter, we present the results on the synthetic datasets in table 6.

BMF has a better performance than UserKNN when trained on the synthetic datasets.
Similarly to UserKNN, BMF also results in low RMSE for scenarios 2 and 3, and high
NDCG@10 for scenario 2. Experimenting with different synthetic datasets helps explore
the observation from the previous section that BMF propagates popularity in some cases.
Popularity bias can be observed for scenarios 2 and 4, while scenario 5 where users with
large profiles do not like popular items results in no popularity bias across metrics. This
indicates that the preferences of users with large profiles are influential for the system, and
thus, for popularity bias.

In the previous section, we saw that the LensKit and Cornac implementations lead to
varying results with respect to popularity bias. On the synthetic datasets, the effect is
more apparent. The bias parameter has opposite effects between the two implementations
in scenario 4 as seen in Table 6. In Cornac, using bias increases popularity bias across
all metrics. On the contrary, the bias parameter decreases popularity bias in the LensKit
implementation. This can be due to the use of different optimization methods by Cornac
and LensKit. Further investigation is needed to better understand the impact of the bias
parameter on popularity bias.

We conclude that, even though the data synthesis was based on the functionality of
UserKNN, the differences between the synthesized datasets largely impact popularity bias
propagated by BMF. Furthermore, the results confirm that for both BMF implementations,

18

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

Table 6: Popularity bias and performance given different BMF implementations and syn-
thetic data based on different data scenarios. For each metric, we embolden the highest
value among configurations. For ARP and PL, we use the asterisk (*) to signify which
values are significantly lower than the highest one according to a Mann—Whitney U test
with p < 0.005.

Bias Pop ARP?T PLT RMSE] NDCG

DataScenario Framework parameter Corrt @101
Scenario 1 Cornac False -0.013 0.001* -67.527* 3.191 0.001
True 0.079 0.006 74.548 2.872 0.003

Lenskit False -0.015 0.002* -52.395* 3.400 0.002

True -0.008 0.002* -49.725%* 3.028 0.001

Scenario 2 Cornac False 0.475 0.030 743.388 0.938 0.026
True 0.467 0.030 743.446 0.802 0.025

Lenskit False 0.507 0.030* 740.064 0.940 0.025

True 0.498 0.030* 742.366 0.818 0.025

Scenario 3 Cornac False -0.022 0.001* -76.210%* 0.850 0.001
True 0.010 0.002 -31.473 0.796 0.001

Lenskit False -0.091 0.001* -73.688%* 1.032 0.001

True 0.017 0.002* -37.387* 0.810 0.001

Scenario 4 Cornac False 0.036 0.004* -20.286%* 2.510 0.005
True 0.424 0.027 647.074 2.297 0.019

Lenskit False 0.462 0.010* 149.807* 2.746 0.012

True 0.219 0.008*% 129.271%* 2.390 0.008

Scenario 5 Cornac False -0.018 0.001* -73.474* 2.671 0.001
True -0.006 0.002* -53.320* 2.500 0.001

Lenskit False -0.045 0.001* -59.393* 2.800 0.002

True -0.013 0.002 -50.113 2.582 0.001

19

SAVVINA DANIIL ET AL.

the bias parameter affects popularity bias. The effect is different - sometimes even opposite
- for different combinations of dataset and implementation.

5.3 Popularity bias by Deep Matrix Factorization

The goal of this section is to see whether the lessons learned from the detailed analysis
presented in the previous sections hold for a neural network-based method.

5.3.1 REAL DAtTA

Table 7 shows the results when combining different DMF configuration choices with the
Book-Crossing subset and MovieLens1M. Training DMF on Epinion was not possible due
to memory allocation limitations.

The number of latent factors in the final layer of the neural network has a clear impact
on the results. Interestingly, the impact differs between the two datasets. Specifically, when
the number of factors is set to 64, popularity bias increases for Book-Crossing, with the
difference being significant. In the case of MovieLens1M, the same configuration results in
significantly lower values across metrics.

We observe that the combination of data and configuration also affects popularity bias
propagation by neural architectures.

Table 7: Popularity bias and performance on the Book-Crossing, MovieLens1M and Epinion
datasets given different DMF versions. For each metric, we embolden the highest value
among configurations. For ARP and PL, we use the asterisk (*) to signify which values
are significantly lower than the highest one according to a Mann-Whitney U test with
p < 0.005.

Pop ARP?T PLT NDCG

Dataset Factors Corrf @107
B-C 32 0.012 0.002* -38.610* 0.002
64 0.125 0.005 35.582 0.003

ML1IM 32 0.046 0.064 -54.777 0.010
64 0.032 0.057* -59.654* 0.008

5.3.2 SYNTHETIC DATA

To confirm and expand upon the observations of the previous section, we report on perfor-
mance and popularity bias of DMF on the synthetic data in table 8.

Popularity bias and performance fluctuate among scenarios. In line with the results
from previous sections, popularity bias is the highest for scenarios 2 and 4, and the low for
the other scenarios. The parameter tested also has an effect, which aligns with the effect on
the real data. For all scenarios, increasing the number of factors in the final layer increases
popularity bias, in most cases significantly, which aligns with the results on Book-Crossing.

Note that the results presented in this section are preliminary. Further research is
needed to explore the effect of data characteristics and algorithm configuration on popularity

20

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

Table 8: Popularity bias and performance given different DMF versions and synthetic data
based on different data scenarios. For each metric, we embolden the highest value among
configurations. For ARP and PL, we use the asterisk (*) to signify which values are signif-
icantly lower than the highest one according to a Mann—Whitney U test with p < 0.005.

Pop ARP? PLT NDCG

DataScenario Factors Corrt @107
Scenario 1 32 0.057 0.003 -8.529 0.003
64 0.059 0.003 -10.247 0.003

Scenario 2 32 0.183 0.005 42.030 0.004
64 0.720 0.004* -13.542 0.017

Scenario 3 32 0.039 0.003* -19.041* 0.002
64 0.074 0.004 4.613 0.003

Scenario 4 32 0.009 0.002* -41.003* 0.002
64 0.393 0.003 -34.005 0.006

Scenario 5 32 0.004 0.002* -43.433* 0.002
64 0.079 0.003 -10.451 0.003

bias propagated by neural network based algorithms. A future study could align with
recent advancements in recommender systems by formulating a ranking prediction task and
studying popularity bias propagation by the neural network based algorithms available in
commonly used open source frameworks.

The preliminary results indicate that the conclusions drawn above also hold for neural
network based approaches: data characteristics determine whether popularity bias occurs;
popularity bias is not unavoidable even when the data follows a long tail distribution; pa-
rameters that can be set at implementation time have a large effect on the propagation of
popularity bias.

6 Discussion
6.1 Implications of the present study

Our research shows that multiple data and configuration factors can have an effect on
whether bias is propagated. Relying on frameworks readily available to researchers is con-
venient and a concrete step towards reproducibility, but requires being aware and detailed
about the limitations. When simple parameters, such as minimum neighbours in UserKNN,
are so influential, it raises questions on how generalizable research on recommender systems
bias can be. Our results indicate that bias studies can only draw conclusions within the
limits of their specific research and not further than that.

It follows that being explicit about the context within which a type of bias is studied
is crucial, both in terms of data characteristics and implementation. It is a known issue
in recommender systems literature that implementation details are often not disclosed by
studies. Even in cases where they are, guessing the effect of different hyperparameters that
are not present in an implementation or experimented with is not trivial. Bias reporting is

21

SAVVINA DANIIL ET AL.

definitely not complete if it is not accompanied by clarity around the characteristics, goals
and limitations of the system that is being studied.

6.2 Recommendations of the present study

Based on the results of the present study, we put forward two recommendations towards
researchers who study bias in recommender systems.

First, researchers should analyze and report on the dataset characteristics that might
impact the type of bias they are concerned with. For UserKNN, the relationship between
rating and popularity, as well as the preferences of users with large profiles impact popularity
bias and should be taken into account in relevant studies. For other algorithms and types
of bias, there could be other relevant characteristics. Such analysis will help the reader
understand the extent to which the results are a result of the dataset characteristics.

Second, researchers should test multiple algorithm configurations when measuring bias
propagation. In a similar way that the community expects x-fold cross validation, since
presenting the results of only one run may not be reliable, we could expect to see results on
multiple algorithm configurations as well. If the conclusions are only valid for one specific
configuration of the algorithm at hand, then that should be clear in the limitations of the
study.

6.3 Limitations of the present study and future work

Despite our extensive testing, the results are potentially sensitive to our own experimental
design, such as the method for train-test splitting or randomness in the data generation
process. Similarly, instantiating the different implementations with the exact same configu-
ration choices is not always possible due to some of the parameters not being configurable.
As a result, there might be implementation differences between the frameworks that we
are not aware of and cause part of the variation in results, irrespectively of the configura-
tions tested. On this note, we noticed that our reported accuracy does not always coincide
with the conclusions of other papers that study the same algorithms and/or datasets. For
example, the developers of DMF reported high NDCG@10 results for MovieLens1M (Xue
et al., 2017). However, their evaluation strategy was very different from ours: for every user,
they only held out one item consumed by them for testing, and only ranked 100 random
items instead of all the items not present in the training set like we did. It is reasonable
that their performance is better than the one we report. This discrepancy further supports
our claim that generalizing conclusions beyond the boundaries of a specific study is not
always possible and should be done carefully, which aligns with our previous work where
we emphasized the impact of evaluation strategy (Daniil et al., 2024). These observations
highlight the importance of our line of research instead of hindering it, since they hint that
data and implementation dependence might be present more often than we think.

We recognize that the scholar community has generally moved on from explicit user
preferences and rating prediction. We do not focus on implicit feedback given that recent
studies on popularity bias are often performed on datasets with explicit ratings in the con-
text of rating prediction tasks (Naghiaei et al., 2022; Kowald et al., 2020; Kowald and Lacic,
2022). A process similar to ours can be followed in the context of implicit feedback: instead
of tweaking ratings, researchers can form scenarios around the distribution of popularity in

22

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

the dataset and study distributions with varying levels of long-tail. Future work can also
focus on components that we chose not to investigate in this study, such as more advanced
algorithms, other open libraries for implementation, and the vulnerability of other types
of bias to data and algorithms. For example, researchers can create data scenarios based
on assumptions regarding the relationship between an item’s rating and the demographic
characteristics of its creator. Further nuance can be introduced in the data synthesis part,
by allowing for more complex relationships between popularity, rating and user influence.
Future work could further investigate the impact of data characteristics and configurations
on the complex relationship between system performance and popularity bias. Our find-
ings could also be of use in the domain of bias mitigation: certain algorithm configurations
appear to have a clear effect on popularity bias (e.g., increasing the minimum neighbours
in UserKNN consistently increases it). It is, therefore, relevant to investigate whether ap-
propriately configuring certain parameters assists with popularity bias mitigation.

7 Conclusion

In this study, we reflected on the need for fundamental understanding of the relationship
between data, algorithms and bias in recommender systems. We focused on reporting
on popularity bias, and tracked algorithm configurations and data characteristics that are
of importance in its propagation. Accordingly, we generated a set of synthetic datasets,
experimented with performing a recommendation process on real and synthetic datasets
using different configurations of the algorithms at hand, and evaluated popularity bias
using well-known metrics. We found that even when the distribution of popularity in the
dataset is long-tail, popularity bias is not unavoidable. We showed that the relationship
between popularity and rating, as well as the preferences of users with large profiles have an
impact on bias. We highlighted the sensitivity of bias propagation to algorithm configuration
and, by extension, framework implementation. Our observations point to methodology and
reproducibility issues that extend further than a specific use case, to the recommender
systems field at large.

Recommender systems are widely used in our online lives, and bias propagation by such
systems can have serious societal impact. With this work, we hope to have called attention
to the ambiguity in bias reporting and motivated researchers to strive for reproducibility
and highlight specificity when appropriate.

Acknowledgments and Disclosure of Funding

This research was funded through a public-private partnership between CWI and the KB
National Library of the Netherlands.

References

Himan Abdollahpouri. Popularity bias in recommendation: a multi-stakeholder perspective.
PhD thesis, University of Colorado at Boulder, 2020.

23

SAVVINA DANIIL ET AL.

Himan Abdollahpouri and Masoud Mansoury. Multi-sided exposure bias in recommenda-
tion, 2020. URL https://arxiv.org/abs/2006.15772.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling popularity bias
in learning-to-rank recommendation. In Proceedings of the 11th ACM conference on
recommender systems, pages 42-46, 2017.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Managing popularity bias in
recommender systems with personalized re-ranking, 2019a. URL https://arxiv.org/
abs/1901.07555.

Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. The
unfairness of popularity bias in recommendation. In Recommendation in Multi-stakeholder
Environments (RMSE), in conjunction with the 13th ACM Conference on Recommender
Systems, 2019b.

Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. The
connection between popularity bias, calibration, and fairness in recommendation. In
Proceedings of the 14th ACM Conference on Recommender Systems, pages 726-731, 2020.

Charu C Aggarwal. Neighborhood-based collaborative filtering. Recommender Systems:
The Textbook, pages 29-70, 2016.

Abdul Basit Ahanger, Syed Wajid Aalam, Muzafar Rasool Bhat, and Assif Assad. Popu-
larity bias in recommender systems-a review. In International Conference on Emerging
Technologies in Computer Engineering, pages 431-444. Springer, 2022.

Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Felice Anto-
nio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia. Elliot: A
comprehensive and rigorous framework for reproducible recommender systems evalua-
tion. In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval, pages 2405-2414, 2021.

Alejandro Bellogin and Alan Said. Improving accountability in recommender systems re-
search through reproducibility. User Modeling and User-Adapted Interaction, 31(5):941—
977, 2021.

Alejandro Bellogin, Pablo Castells, and Ivan Cantador. Statistical biases in information
retrieval metrics for recommender systems. Information Retrieval Journal, 20:606-634,
2017.

Jesus Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Recom-
mender systems survey. Knowledge-based systems, 46:109-132, 2013.

FErik Brynjolfsson, Yu Jeffrey Hu, and Michael D Smith. From niches to riches: Anatomy
of the long tail. Sloan management review, 47(4):67-71, 2006.

Oscar Celma and Pedro Cano. From hits to niches? or how popular artists can bias music
recommendation and discovery. In Proceedings of the 2nd KDD Workshop on Large-Scale
Recommender Systems and the Netflix Prize Competition, pages 1-8, 2008.

24

https://arxiv.org/abs/2006.15772
https://arxiv.org/abs/1901.07555
https://arxiv.org/abs/1901.07555

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias
and debias in recommender system: A survey and future directions. ACM Transaction
on Information System, 41(3), 2023. ISSN 1046-8188.

Paolo Cremonesi and Dietmar Jannach. Progress in recommender systems research: Crisis?
what crisis? AI Magazine, 42(3):43-54, 2021.

Savvina Daniil, Mirjam Cuper, Cynthia CS Liem, Jacco van Ossenbruggen, and Laura
Hollink. Reproducing popularity bias in recommendation: The effect of evaluation strate-
gies. ACM Transactions on Recommender Systems, 2(1):1-39, 2024.

Yashar Deldjoo, Alejandro Bellogin, and Tommaso Di Noia. Explaining recommender sys-
tems fairness and accuracy through the lens of data characteristics. Information Process-
ing & Management, 58(5):102662, 2021.

Christian Desrosiers and George Karypis. A comprehensive survey of neighborhood-based
recommendation methods. Recommender systems handbook, pages 107-144, 2010.

Bora Edizel, Francesco Bonchi, Sara Hajian, André Panisson, and Tamir Tassa. Fairec-
sys: Mitigating algorithmic bias in recommender systems. International Journal of Data
Science and Analytics, 9(2):197-213, 2019.

Michael D Ekstrand. Lenskit for python: Next-generation software for recommender sys-
tems experiments. In Proceedings of the 29th ACM international conference on informa-
tion & knowledge management, pages 2999-3006, 2020.

Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Sorush Saghari,
Shiva Parsa Rad, and Marko Tkalci¢. Investigating the impact of recommender systems

on user-based and item-based popularity bias. Information Processing & Management,
58(5):102655, 2021.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really making
much progress? a worrying analysis of recent neural recommendation approaches. In
Proceedings of the 13th ACM conference on recommender systems, pages 101-109, 2019.

Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. A
troubling analysis of reproducibility and progress in recommender systems research. ACM
Transactions on Information Systems (TOILS), 39(2):1-49, 2021.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. What recom-
menders recommend: an analysis of recommendation biases and possible countermea-
sures. User Modeling and User-Adapted Interaction, 25:427-491, 2015.

Shah Khusro, Zafar Ali, and Irfan Ullah. Recommender systems: issues, challenges, and re-
search opportunities. In Information science and applications, pages 1179-1189. Springer,
2016.

25

SAVVINA DANIIL ET AL.

Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, and Christoph Trattner. A
survey on popularity bias in recommender systems. User Modeling and User-Adapted
Interaction, pages 1-58, 2024.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 20009.

Dominik Kowald and Emanuel Lacic. Popularity bias in collaborative filtering-based multi-
media recommender systems. In International Workshop on Algorithmic Bias in Search
and Recommendation, pages 1-11. Springer, 2022.

Dominik Kowald, Markus Schedl, and Elisabeth Lex. The unfairness of popularity bias in
music recommendation: A reproducibility study. In Advances in Information Retrieval:
42nd European Conference on IR Research, ECIR, Lisbon, Portugal, Proceedings, Part
11 2, pages 35—42. Springer, 2020.

Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In Proceedings of the
2007 ACM conference on Recommender systems, pages 17-24, 2007.

Mohammadmehdi Naghiaei, Hossein A Rahmani, and Mahdi Dehghan. The unfairness of
popularity bias in book recommendation. In Advances in Bias and Fairness in Informa-
tion Retrieval: Third International Workshop, BIAS 2022, Stavanger, Norway, Revised
Selected Papers, pages 69-81. Springer, 2022.

Alan Said and Alejandro Bellogin. Comparative recommender system evaluation: bench-
marking recommendation frameworks. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 129-136, 2014.

Aghiles Salah, Quoc-Tuan Truong, and Hady W Lauw. Cornac: A comparative framework
for multimodal recommender systems. The Journal of Machine Learning Research, 21
(1):3803-3807, 2020.

Manel Slokom. Comparing recommender systems using synthetic data. In Proceedings of
the 12th ACM Conference on Recommender Systems, pages 548-552, 2018.

Manel Slokom and Martha Larson. Doing data right: How lessons learned working with
conventional data should inform the future of synthetic data for recommender systems.
arXiw preprint arXiw:2110.03275, 2021.

Géabor Takécs, Istvan Pilaszy, and Domonkos Tikk. Applications of the conjugate gradient
method for implicit feedback collaborative filtering. In Proceedings of the fifth ACM
conference on Recommender systems, pages 297-300, 2011.

Karen HL Tso and Lars Schmidt-Thieme. Empirical analysis of attribute-aware recom-
mender system algorithms using synthetic data. Journal of Computers, 1(4):18-29, 2006.

Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A survey on the fairness
of recommender systems. ACM Transactions on Information Systems, 41(3):1-43, 2023.

26

ON THE CHALLENGES OF STUDYING BIAS IN RECOMMENDER SYSTEMS

Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix
factorization models for recommender systems. In IJCAI volume 17, pages 3203—-3209.
Melbourne, Australia, 2017.

Emre Yalcin. Blockbuster: A new perspective on popularity-bias in recommender systems.
In 2021 6th International Conference on Computer Science and Engineering (UBMK),
pages 107-112. IEEE, 2021.

Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. Challenging the long tail
recommendation. Proceedings of the 38th International Conference on Very Large Data
Bases (VLDB Endowment), 5(9):896-907, 2012.

Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng Zhang, and
Wei Wu. Popularity bias is not always evil: Disentangling benign and harmful bias for
recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022.

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel
collaborative filtering for the netflix prize. In Rudolf Fleischer and Jinhui Xu, editors,
Algorithmic Aspects in Information and Management, pages 337-348, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. ISBN 978-3-540-68880-8.

Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving rec-
ommendation lists through topic diversification. In Proceedings of the 14th international
conference on World Wide Web, pages 22-32, 2005.

27

	Introduction
	Related Work
	Bias in Recommender Systems
	Datasets and Reproducibility

	Identifying Data Characteristics and Algorithm Configurations
	Data Characteristics
	Real Datasets
	Data Scenarios

	Algorithm Configurations
	UserKNN
	Traditional Matrix Factorization
	Deep Matrix Factorization

	Experimental Setup
	Results
	Popularity bias by UserKNN
	Real Data
	Synthetic Data

	Popularity bias by Matrix Factorization algorithms
	Real Data
	Synthetic Data

	Popularity bias by Deep Matrix Factorization
	Real Data
	Synthetic Data

	Discussion
	Implications of the present study
	Recommendations of the present study
	Limitations of the present study and future work

	Conclusion

